Gurulingaiah Bhavya, Savitha De Britto, Daoud Ali, Saud Alarifi, Mostafa Abdelrahman, Nagaraja Geetha, Sudisha Jogaiah
{"title":"Microbial mediated degradation of azo dyes from textile effluents is associated with the production of extracellular polysaccharides.","authors":"Gurulingaiah Bhavya, Savitha De Britto, Daoud Ali, Saud Alarifi, Mostafa Abdelrahman, Nagaraja Geetha, Sudisha Jogaiah","doi":"10.1007/s12223-025-01309-w","DOIUrl":null,"url":null,"abstract":"<p><p>Indigenous bacteria are very potent and useful in remediating hazardous pollutants specific to particular geographical locations. This work aimed to isolate two potent acid red dye decolorizing bacterial strains, namely Bacillus sp. strain UoMP1 and Citrobacter sp. strain UoMP2, from a textile effluent sample and aimed to optimize the conditions and explore the probable enzymatic involvement. The two isolates, namely D2 and D3, exhibited tolerance towards dye in an optimized concentration range of 2-4%. The decolourization percentage was approximately 80% for D2 and 75% for D3. The optimized conditions for decolourization were 72 h of incubation, pH 7, and a temperature of 37 °C. It is well known that the enzymes from the class reductase play a key role in the decolourization of various dyes and other xenobiotics. In this study, the azoreductase activity in D2 and D3 was found to be remarkably high under optimal conditions. The maximal intracellular azoreductase activity was 6.5 and 2.5 µg of acid dye reduced/min per mg of protein in D2 and D3 isolates, respectively. In the D2 isolate, an increased concentration of extracellular polysaccharides under dye stress suggested a possible role of extracellular decolourization and complexation mechanisms. Based on the 16 s RNA gene amplification, sequencing, and analysis, D2 and D3 were identified as Bacillus sp. strain UoMP1 and Citrobacter sp. strain UoMP2, respectively. Bacillus sp. strain UoMP1, an indigenous bacterial isolate, was found to be very efficient in decolourization of an azo dye-acid red dye used in the silk industry. This study provides valuable insights into the non-toxic tolerable dye concentration for these bacterial cells, which employ both enzyme-based decolourization mechanisms and extracellular mechanisms via extracellular polysaccharide production. Further exploration of biochemical and molecular mechanisms will help refine these isolates for field applications.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01309-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Indigenous bacteria are very potent and useful in remediating hazardous pollutants specific to particular geographical locations. This work aimed to isolate two potent acid red dye decolorizing bacterial strains, namely Bacillus sp. strain UoMP1 and Citrobacter sp. strain UoMP2, from a textile effluent sample and aimed to optimize the conditions and explore the probable enzymatic involvement. The two isolates, namely D2 and D3, exhibited tolerance towards dye in an optimized concentration range of 2-4%. The decolourization percentage was approximately 80% for D2 and 75% for D3. The optimized conditions for decolourization were 72 h of incubation, pH 7, and a temperature of 37 °C. It is well known that the enzymes from the class reductase play a key role in the decolourization of various dyes and other xenobiotics. In this study, the azoreductase activity in D2 and D3 was found to be remarkably high under optimal conditions. The maximal intracellular azoreductase activity was 6.5 and 2.5 µg of acid dye reduced/min per mg of protein in D2 and D3 isolates, respectively. In the D2 isolate, an increased concentration of extracellular polysaccharides under dye stress suggested a possible role of extracellular decolourization and complexation mechanisms. Based on the 16 s RNA gene amplification, sequencing, and analysis, D2 and D3 were identified as Bacillus sp. strain UoMP1 and Citrobacter sp. strain UoMP2, respectively. Bacillus sp. strain UoMP1, an indigenous bacterial isolate, was found to be very efficient in decolourization of an azo dye-acid red dye used in the silk industry. This study provides valuable insights into the non-toxic tolerable dye concentration for these bacterial cells, which employ both enzyme-based decolourization mechanisms and extracellular mechanisms via extracellular polysaccharide production. Further exploration of biochemical and molecular mechanisms will help refine these isolates for field applications.
期刊介绍:
Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.