Kate Bubar, Casey Middleton, Daniel Larremore, Katelyn Gostic
{"title":"A fundamental limit to the effectiveness of traveller screening with molecular tests.","authors":"Kate Bubar, Casey Middleton, Daniel Larremore, Katelyn Gostic","doi":"10.1017/S0950268825100381","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the appeal of screening travellers to prevent case importation during infectious disease outbreaks, evidence shows that symptom screening is largely ineffective in delaying the geographical spread of infection. Molecular tests offer high sensitivity and specificity and can detect infections earlier than symptom screening, suggesting potential for improved outcomes. However, they were used to screen travellers for COVID-19 with mixed success. To investigate molecular screening's role in controlling COVID-19, and to quantify the effectiveness of screening for future pathogens of concern, we developed a probabilistic model that incorporates within-host viral kinetics. We then evaluated the potential effectiveness of screening travellers for influenza A, SARS-CoV-1, SARS-CoV-2, and Ebola virus. Even under highly optimistic assumptions, we found that the inability to detect recent infections always limits the effectiveness of traveller screening. We quantify this fundamental limit by proposing an estimator for the fraction of transmission that is preventable by screening. We also demonstrate that estimates of ascertainment overestimate reductions in transmission. These results highlight the essential role that quarantine and repeated testing play in infectious disease containment. Furthermore, our findings indicate that improving screening effectiveness requires the ability to detect infection much earlier than current state-of-the-art molecular tests.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":" ","pages":"e95"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0950268825100381","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the appeal of screening travellers to prevent case importation during infectious disease outbreaks, evidence shows that symptom screening is largely ineffective in delaying the geographical spread of infection. Molecular tests offer high sensitivity and specificity and can detect infections earlier than symptom screening, suggesting potential for improved outcomes. However, they were used to screen travellers for COVID-19 with mixed success. To investigate molecular screening's role in controlling COVID-19, and to quantify the effectiveness of screening for future pathogens of concern, we developed a probabilistic model that incorporates within-host viral kinetics. We then evaluated the potential effectiveness of screening travellers for influenza A, SARS-CoV-1, SARS-CoV-2, and Ebola virus. Even under highly optimistic assumptions, we found that the inability to detect recent infections always limits the effectiveness of traveller screening. We quantify this fundamental limit by proposing an estimator for the fraction of transmission that is preventable by screening. We also demonstrate that estimates of ascertainment overestimate reductions in transmission. These results highlight the essential role that quarantine and repeated testing play in infectious disease containment. Furthermore, our findings indicate that improving screening effectiveness requires the ability to detect infection much earlier than current state-of-the-art molecular tests.
期刊介绍:
Epidemiology & Infection publishes original reports and reviews on all aspects of infection in humans and animals. Particular emphasis is given to the epidemiology, prevention and control of infectious diseases. The scope covers the zoonoses, outbreaks, food hygiene, vaccine studies, statistics and the clinical, social and public-health aspects of infectious disease, as well as some tropical infections. It has become the key international periodical in which to find the latest reports on recently discovered infections and new technology. For those concerned with policy and planning for the control of infections, the papers on mathematical modelling of epidemics caused by historical, current and emergent infections are of particular value.