Iván Yuste, Francis C Luciano, Carmina Rodríguez, Bianca I Ramirez, Chrysi Rapti, Brayan J Anaya, Aikaterini Lalatsa, Almudena Ribed-Sánchez, Pablo Sanz-Ruiz, Elena González-Burgos, Dolores R Serrano
{"title":"Antimicrobial 3D printed implants for periprosthetic joint infections.","authors":"Iván Yuste, Francis C Luciano, Carmina Rodríguez, Bianca I Ramirez, Chrysi Rapti, Brayan J Anaya, Aikaterini Lalatsa, Almudena Ribed-Sánchez, Pablo Sanz-Ruiz, Elena González-Burgos, Dolores R Serrano","doi":"10.1007/s13346-025-01934-5","DOIUrl":null,"url":null,"abstract":"<p><p>Periprosthetic joint infections (PJIs) remain a serious complication following hip and knee arthroplasty, affecting 1-5% of patients in developed countries and posing significant challenges to patients, clinicians, and healthcare systems. Conventional prophylactic strategies, such as antibiotic-loaded bone cement, suffer from limited post-implantation drug release and potential compromise of mechanical integrity. To overcome these limitations, we developed a personalized, 3D-printed implant designed to integrate with the acetabular component of joint prostheses. These implants deliver either monotherapy or a combination of amphotericin B (AmB) and vancomycin (VAN), targeting both fungal and bacterial pathogens. Fabricated via fused deposition modeling using a biocompatible polyvinyl alcohol-polyethylene glycol (PVA-PEG) matrix, the implants enable passive drug loading and rapid adhesion to prosthetic surfaces within 60 s, minimizing operative time. In vitro testing confirmed broad-spectrum antimicrobial activity against Candida spp. (C. albicans, C. parapsilosis, C. glabrata, C. krusei) and Staphylococcus spp. (S. aureus, S. epidermidis). VAN was released rapidly, while AmB exhibited sustained release for up to 10 h, with both maintaining saturation solubility for 48 h. Notably, AmB-loaded implants showed five-fold lower hemolytic toxicity compared to free drug. These results highlight the potential of 3D-printed, drug-eluting implants as a clinically viable solution for the prevention and early treatment of PJIs.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01934-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Periprosthetic joint infections (PJIs) remain a serious complication following hip and knee arthroplasty, affecting 1-5% of patients in developed countries and posing significant challenges to patients, clinicians, and healthcare systems. Conventional prophylactic strategies, such as antibiotic-loaded bone cement, suffer from limited post-implantation drug release and potential compromise of mechanical integrity. To overcome these limitations, we developed a personalized, 3D-printed implant designed to integrate with the acetabular component of joint prostheses. These implants deliver either monotherapy or a combination of amphotericin B (AmB) and vancomycin (VAN), targeting both fungal and bacterial pathogens. Fabricated via fused deposition modeling using a biocompatible polyvinyl alcohol-polyethylene glycol (PVA-PEG) matrix, the implants enable passive drug loading and rapid adhesion to prosthetic surfaces within 60 s, minimizing operative time. In vitro testing confirmed broad-spectrum antimicrobial activity against Candida spp. (C. albicans, C. parapsilosis, C. glabrata, C. krusei) and Staphylococcus spp. (S. aureus, S. epidermidis). VAN was released rapidly, while AmB exhibited sustained release for up to 10 h, with both maintaining saturation solubility for 48 h. Notably, AmB-loaded implants showed five-fold lower hemolytic toxicity compared to free drug. These results highlight the potential of 3D-printed, drug-eluting implants as a clinically viable solution for the prevention and early treatment of PJIs.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.