Mengyun Yang, Ze Yu, Jieming Ping, Yuanchun Duan, Jianlong Tang, Weixiang Liu, Qing He, Yongfeng Lai, Sin Man Lam, Hesen Tang, Zhengjie Liu, Weimin Wang, Min Zhu, Wei Hu, Yunyun Han, Guanghou Shui, Jiqing Hao, Zheng Liu, Ning Wu
{"title":"Targeting lipid scrambling potentiates ferroptosis and triggers tumor immune rejection","authors":"Mengyun Yang, Ze Yu, Jieming Ping, Yuanchun Duan, Jianlong Tang, Weixiang Liu, Qing He, Yongfeng Lai, Sin Man Lam, Hesen Tang, Zhengjie Liu, Weimin Wang, Min Zhu, Wei Hu, Yunyun Han, Guanghou Shui, Jiqing Hao, Zheng Liu, Ning Wu","doi":"10.1126/sciadv.adx6587","DOIUrl":null,"url":null,"abstract":"<div >Despite advances in understanding the metabolic mechanisms of ferroptosis, the molecular events following lipid peroxide accumulation on the plasma membrane (PM) remain unclear. Herein, we identify TMEM16F as a ferroptosis suppressor at the executional phase. TMEM16F-deficient cells display heightened sensitivity to ferroptosis. Mechanistically, TMEM16F-mediated phospholipids (PLs) scrambling orchestrates extensive remodeling of PM lipids, translocating PLs at the lesion sites to reduce membrane tension, therefore mitigating the membrane damage. Unexpectedly, failure of PL scrambling in TMEM16F-deficient cells leads to lytic cell death, exhibiting PM collapse and unleashing substantial danger-associated molecule patterns. TMEM16F-deficient tumors exhibit decelerated progression. Notably, lipid scrambling inhibition synergizes with PD-1 blockade to trigger robust tumor immune rejection. The antiparasitic drug ivermectin enhances the responsiveness to PD-1 blockade by suppressing TMEM16F. Our findings uncover TMEM16F-mediated lipid scrambling as an anti-ferroptosis regulator by relocating PLs on the PM during the final stages of ferroptosis. Targeting TMEM16F-mediated lipid scrambling presents a promising therapeutic strategy for cancer treatment.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 33","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx6587","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx6587","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advances in understanding the metabolic mechanisms of ferroptosis, the molecular events following lipid peroxide accumulation on the plasma membrane (PM) remain unclear. Herein, we identify TMEM16F as a ferroptosis suppressor at the executional phase. TMEM16F-deficient cells display heightened sensitivity to ferroptosis. Mechanistically, TMEM16F-mediated phospholipids (PLs) scrambling orchestrates extensive remodeling of PM lipids, translocating PLs at the lesion sites to reduce membrane tension, therefore mitigating the membrane damage. Unexpectedly, failure of PL scrambling in TMEM16F-deficient cells leads to lytic cell death, exhibiting PM collapse and unleashing substantial danger-associated molecule patterns. TMEM16F-deficient tumors exhibit decelerated progression. Notably, lipid scrambling inhibition synergizes with PD-1 blockade to trigger robust tumor immune rejection. The antiparasitic drug ivermectin enhances the responsiveness to PD-1 blockade by suppressing TMEM16F. Our findings uncover TMEM16F-mediated lipid scrambling as an anti-ferroptosis regulator by relocating PLs on the PM during the final stages of ferroptosis. Targeting TMEM16F-mediated lipid scrambling presents a promising therapeutic strategy for cancer treatment.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.