{"title":"Sintering of catalytic metal nanoparticles under exothermic conditions in a continuous stirred tank reactor","authors":"Vladimir P. Zhdanov","doi":"10.1016/j.cherd.2025.07.050","DOIUrl":null,"url":null,"abstract":"<div><div>Academic studies of sintering of supported metal nanoparticles usually imply that the system temperature is constant and the growth of the average nanoparticle radius and decrease of dispersion or activity can be described by the power-law equations. In catalytic applications, the sintering typically occurs in reactors under exothermic conditions at high temperatures, and the sintering-related loss of the catalyst activity may result in decrease of temperature, which in turn may reduce the rate of sintering. Focusing on catalytic conversion in a continuous stirred tank reactor, I show that in the presence of this negative feedback the power-law equations can be used as well by introducing the apparent exponent which is appreciably larger than that measured or predicted by the conventional models of sintering at constant temperature.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"221 ","pages":"Pages 308-312"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225004083","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Academic studies of sintering of supported metal nanoparticles usually imply that the system temperature is constant and the growth of the average nanoparticle radius and decrease of dispersion or activity can be described by the power-law equations. In catalytic applications, the sintering typically occurs in reactors under exothermic conditions at high temperatures, and the sintering-related loss of the catalyst activity may result in decrease of temperature, which in turn may reduce the rate of sintering. Focusing on catalytic conversion in a continuous stirred tank reactor, I show that in the presence of this negative feedback the power-law equations can be used as well by introducing the apparent exponent which is appreciably larger than that measured or predicted by the conventional models of sintering at constant temperature.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.