Mapping global human presence for nature conservation using geotagged social media data

IF 4.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Peixian Luo , Jiawei Yi , Yunyan Du , Sheng Huang , Nan Wang , Wenna Tu , Dingchen Hu , Haitao Wei
{"title":"Mapping global human presence for nature conservation using geotagged social media data","authors":"Peixian Luo ,&nbsp;Jiawei Yi ,&nbsp;Yunyan Du ,&nbsp;Sheng Huang ,&nbsp;Nan Wang ,&nbsp;Wenna Tu ,&nbsp;Dingchen Hu ,&nbsp;Haitao Wei","doi":"10.1016/j.biocon.2025.111404","DOIUrl":null,"url":null,"abstract":"<div><div>Quantifying human presence in natural areas is crucial for understanding anthropogenic pressures on biodiversity and informing conservation strategies, yet monitoring at global scales remains challenging due to limited data and spatial sampling bias. This study presents a data-driven approach to mapping global human presence at a 0.01-degree resolution using geotagged social media data. We developed a human presence indicator (HPI) that categorizes locations into four intensity levels: no presence, occasional presence, frequent presence, and sustained presence. Using over 195 million geotagged microblogs from China and 76 covariate layers representing natural and social factors, we trained a random forest model to predict human presence worldwide. The model's effectiveness was validated through comprehensive cross-validation with external datasets, including manually labeled global samples, data from X (formerly Twitter), and global human settlement and population distributions. The inferred HPI map showed detectable human presence through social media covering at least 13.41 % of Earth's terrestrial surface, with substantial regional variations across continents and biodiversity hotspots. Analysis of 1995 strictly protected areas showed that while 67 % had minimal human presence (&lt;1 % of their area), 163 protected areas exhibited human presence in over 10 % of their domain, indicating potential conservation challenges. Despite limitations in data quality and sampling rates, this dataset provides valuable estimates of global human presence, particularly for remote or poorly monitored protected areas. The trained model and dataset, which we make freely available, can support consistent cross-regional comparisons and evidence-based conservation planning globally.</div></div>","PeriodicalId":55375,"journal":{"name":"Biological Conservation","volume":"311 ","pages":"Article 111404"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006320725004410","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying human presence in natural areas is crucial for understanding anthropogenic pressures on biodiversity and informing conservation strategies, yet monitoring at global scales remains challenging due to limited data and spatial sampling bias. This study presents a data-driven approach to mapping global human presence at a 0.01-degree resolution using geotagged social media data. We developed a human presence indicator (HPI) that categorizes locations into four intensity levels: no presence, occasional presence, frequent presence, and sustained presence. Using over 195 million geotagged microblogs from China and 76 covariate layers representing natural and social factors, we trained a random forest model to predict human presence worldwide. The model's effectiveness was validated through comprehensive cross-validation with external datasets, including manually labeled global samples, data from X (formerly Twitter), and global human settlement and population distributions. The inferred HPI map showed detectable human presence through social media covering at least 13.41 % of Earth's terrestrial surface, with substantial regional variations across continents and biodiversity hotspots. Analysis of 1995 strictly protected areas showed that while 67 % had minimal human presence (<1 % of their area), 163 protected areas exhibited human presence in over 10 % of their domain, indicating potential conservation challenges. Despite limitations in data quality and sampling rates, this dataset provides valuable estimates of global human presence, particularly for remote or poorly monitored protected areas. The trained model and dataset, which we make freely available, can support consistent cross-regional comparisons and evidence-based conservation planning globally.
利用地理标记的社交媒体数据绘制全球人类存在的自然保护地图
量化人类在自然区域的存在对于理解人为对生物多样性的压力和为保护策略提供信息至关重要,但由于数据有限和空间采样偏差,在全球范围内进行监测仍然具有挑战性。本研究提出了一种数据驱动的方法,利用地理标记的社交媒体数据,以0.01度的分辨率绘制全球人类存在的地图。我们开发了一个人类存在指标(HPI),将地点分为四个强度级别:无存在、偶尔存在、频繁存在和持续存在。利用来自中国的超过1.95亿条地理标记微博和代表自然和社会因素的76个协变量层,我们训练了一个随机森林模型来预测全球范围内的人类存在。通过与外部数据集的全面交叉验证,验证了模型的有效性,包括手动标记的全球样本,来自X(以前的Twitter)的数据,以及全球人类住区和人口分布。推断出的HPI地图显示,通过社交媒体可检测到的人类存在覆盖了至少13.41%的地球陆地表面,在各大洲和生物多样性热点地区存在显著的区域差异。对1995年严格保护区的分析表明,67%的保护区人类活动最少(占其面积的1%),163个保护区的人类活动面积超过其面积的10%,这表明了潜在的保护挑战。尽管在数据质量和采样率方面存在局限性,但该数据集提供了对全球人类存在的有价值的估计,特别是对偏远或监测不足的保护区。我们免费提供的训练模型和数据集可以支持一致的跨区域比较和全球基于证据的保护规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Conservation
Biological Conservation 环境科学-环境科学
CiteScore
10.20
自引率
3.40%
发文量
295
审稿时长
61 days
期刊介绍: Biological Conservation is an international leading journal in the discipline of conservation biology. The journal publishes articles spanning a diverse range of fields that contribute to the biological, sociological, and economic dimensions of conservation and natural resource management. The primary aim of Biological Conservation is the publication of high-quality papers that advance the science and practice of conservation, or which demonstrate the application of conservation principles for natural resource management and policy. Therefore it will be of interest to a broad international readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信