Escherichia coli O157:H7 survival and transfer dynamics on cold chain packaging materials: An integrated experimental-machine learning framework

IF 5.2 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Zhiqiang Wang , Saiwei Ge , Haiyang Li , Wei Xiao , Xinru Wang , Jingjing Pei
{"title":"Escherichia coli O157:H7 survival and transfer dynamics on cold chain packaging materials: An integrated experimental-machine learning framework","authors":"Zhiqiang Wang ,&nbsp;Saiwei Ge ,&nbsp;Haiyang Li ,&nbsp;Wei Xiao ,&nbsp;Xinru Wang ,&nbsp;Jingjing Pei","doi":"10.1016/j.ijfoodmicro.2025.111388","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive investigation of <em>Escherichia coli</em> O157:H7 survival and transfer on six cold chain packaging materials through experimental characterization and machine learning modeling. Survival experiments revealed significant material-dependent variations, with porous PE foamed cotton showing highest bacterial persistence (3.16 ± 0.04 log₁₀(CFU/sample + 1) at 24 h) and smooth nitrile surfaces demonstrating rapid reduction. Transfer rates showed temperature-dependent material ranking, with PE foamed cotton achieving highest efficiency (τ = 0.425 ± 0.021 at 5 °C) and nitrile the lowest (τ = 0.238 ± 0.024). Temperature effects revealed that refrigeration (5 °C) enhanced both bacterial survival and transfer rates (39–107 % increase) compared to freezing (−18 °C), highlighting elevated contamination risks at higher cold chain temperatures. Contact experiments showed instantaneous bacterial transfer with highest efficiency at 2.0 N/cm<sup>2</sup> within tested pressure range. Machine learning models achieved exceptional performance (R<sup>2</sup> = 0.9937 for survival, R<sup>2</sup> = 0.9937 for transfer), with SHAP analysis revealing distinct key determinants: nitrile, time, and temperature for survival prediction, and temperature, time, and surface roughness for transfer prediction. These findings establish the first systematic framework for predicting bacterial behavior on packaging materials and provide evidence-based guidance for cold chain food safety management.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"442 ","pages":"Article 111388"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525003332","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive investigation of Escherichia coli O157:H7 survival and transfer on six cold chain packaging materials through experimental characterization and machine learning modeling. Survival experiments revealed significant material-dependent variations, with porous PE foamed cotton showing highest bacterial persistence (3.16 ± 0.04 log₁₀(CFU/sample + 1) at 24 h) and smooth nitrile surfaces demonstrating rapid reduction. Transfer rates showed temperature-dependent material ranking, with PE foamed cotton achieving highest efficiency (τ = 0.425 ± 0.021 at 5 °C) and nitrile the lowest (τ = 0.238 ± 0.024). Temperature effects revealed that refrigeration (5 °C) enhanced both bacterial survival and transfer rates (39–107 % increase) compared to freezing (−18 °C), highlighting elevated contamination risks at higher cold chain temperatures. Contact experiments showed instantaneous bacterial transfer with highest efficiency at 2.0 N/cm2 within tested pressure range. Machine learning models achieved exceptional performance (R2 = 0.9937 for survival, R2 = 0.9937 for transfer), with SHAP analysis revealing distinct key determinants: nitrile, time, and temperature for survival prediction, and temperature, time, and surface roughness for transfer prediction. These findings establish the first systematic framework for predicting bacterial behavior on packaging materials and provide evidence-based guidance for cold chain food safety management.
大肠杆菌O157:H7在冷链包装材料上的生存和转移动力学:一个集成的实验-机器学习框架
本研究通过实验表征和机器学习建模,全面研究了大肠杆菌O157:H7在六种冷链包装材料上的生存和转移。生存实验显示了显著的材料依赖性变化,多孔PE泡沫棉的细菌持久性最高(24小时3.16±0.04 log₁₀(CFU/sample + 1)),光滑的腈表面显示出快速减少。转移率与材料的温度有关,PE发泡棉的转移率最高(5℃时τ = 0.425±0.021),腈的转移率最低(τ = 0.238±0.024)。温度效应显示,与冷冻(- 18°C)相比,冷藏(5°C)提高了细菌存活率和转移率(增加了39 - 107%),突出了更高冷链温度下污染风险的增加。接触实验表明,在测试压力范围内,2.0 N/cm2的瞬时细菌转移效率最高。机器学习模型取得了优异的表现(R2 = 0.9937, R2 = 0.9937), SHAP分析揭示了不同的关键决定因素:腈、时间和温度用于生存预测,温度、时间和表面粗糙度用于转移预测。这些发现为预测包装材料上的细菌行为建立了第一个系统框架,并为冷链食品安全管理提供了循证指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信