Yuan Tian , Honghua Zhang , Yueyang Qiao , Han Yang , Yanrong Liu , Xiaoyan Ji
{"title":"Intelligent prediction of ionic liquids and deep eutectic solvents by machine learning","authors":"Yuan Tian , Honghua Zhang , Yueyang Qiao , Han Yang , Yanrong Liu , Xiaoyan Ji","doi":"10.1016/j.cjche.2025.06.006","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic liquids (ILs) and deep eutectic solvents (DESs) as green solvents have attracted dramatic attention recently due to their highly tunable properties. However, traditional experimental screening methods are inefficient and resource-intensive. The article provides a comprehensive overview of various ML algorithms, including artificial neural network (ANN), support vector machine (SVM), random forest (RF), and gradient boosting trees (GBT), <em>etc.</em>, which have demonstrated exceptional performance in handling complex and high-dimensional data. Furthermore, the integration of ML with quantum chemical calculations and conductor-like screening model-real solvent (COSMO-RS) has significantly enhanced predictive accuracy, enabling the rapid screening and design of novel solvents. Besides, recent ML applications in the prediction and design of ILs and DESs focused on solubility, melting point, electrical conductivity, and other physicochemical properties become more and more. This paper emphasizes the potential of ML in solvent design, overviewing an efficient approach to accelerate the development of sustainable and high-performance materials, providing guidance for their widespread application in a variety of industrial processes.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"84 ","pages":"Pages 227-243"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125002332","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) as green solvents have attracted dramatic attention recently due to their highly tunable properties. However, traditional experimental screening methods are inefficient and resource-intensive. The article provides a comprehensive overview of various ML algorithms, including artificial neural network (ANN), support vector machine (SVM), random forest (RF), and gradient boosting trees (GBT), etc., which have demonstrated exceptional performance in handling complex and high-dimensional data. Furthermore, the integration of ML with quantum chemical calculations and conductor-like screening model-real solvent (COSMO-RS) has significantly enhanced predictive accuracy, enabling the rapid screening and design of novel solvents. Besides, recent ML applications in the prediction and design of ILs and DESs focused on solubility, melting point, electrical conductivity, and other physicochemical properties become more and more. This paper emphasizes the potential of ML in solvent design, overviewing an efficient approach to accelerate the development of sustainable and high-performance materials, providing guidance for their widespread application in a variety of industrial processes.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.