Symmetry breaking for nonhomogeneous Hénon-type problems involving the 1-Laplacian operator

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Marcos T.O. Pimenta , Yino B. Cueva Carranza , Giovany M. Figueiredo , Olimpio Hiroshi Miyagaki
{"title":"Symmetry breaking for nonhomogeneous Hénon-type problems involving the 1-Laplacian operator","authors":"Marcos T.O. Pimenta ,&nbsp;Yino B. Cueva Carranza ,&nbsp;Giovany M. Figueiredo ,&nbsp;Olimpio Hiroshi Miyagaki","doi":"10.1016/j.nonrwa.2025.104480","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the nonhomogeneous Hénon elliptic problem involving the 1-Laplacian operator within the unit ball. Under some assumptions on the nonlinearity, and for sufficiently large parameter values, we establish the existence of a non-radial solution. Our approach relies on an approximation scheme in which the solution is obtained as the limit of solutions to <span><math><mi>p</mi></math></span>-Laplacian type problems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104480"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182500166X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the nonhomogeneous Hénon elliptic problem involving the 1-Laplacian operator within the unit ball. Under some assumptions on the nonlinearity, and for sufficiently large parameter values, we establish the existence of a non-radial solution. Our approach relies on an approximation scheme in which the solution is obtained as the limit of solutions to p-Laplacian type problems.
涉及1-拉普拉斯算子的非齐次hsamnon型问题的对称性破缺
本文研究了单位球内包含1-拉普拉斯算子的非齐次hsamunon椭圆问题。在一定的非线性假设下,对于足够大的参数值,我们建立了非径向解的存在性。我们的方法依赖于一种近似格式,在这种近似格式中,解作为p-拉普拉斯型问题的解的极限得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信