Design and characterization of BPAC-SA beads synergistic phytoremediation with Eichhornia crassipes for enhanced adsorption of Ni2+ ions from industrial effluents: IoT real-time monitoring

Q1 Environmental Science
Salsyah Billa Rasdin , Dahlang Tahir , Heryanto Heryanto , Vicram Setiawan , Asnan Rinovian , Ahmed Akouibaa , K. Veeravelan
{"title":"Design and characterization of BPAC-SA beads synergistic phytoremediation with Eichhornia crassipes for enhanced adsorption of Ni2+ ions from industrial effluents: IoT real-time monitoring","authors":"Salsyah Billa Rasdin ,&nbsp;Dahlang Tahir ,&nbsp;Heryanto Heryanto ,&nbsp;Vicram Setiawan ,&nbsp;Asnan Rinovian ,&nbsp;Ahmed Akouibaa ,&nbsp;K. Veeravelan","doi":"10.1016/j.biteb.2025.102255","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we demonstrate the effective use of sodium alginate (SA) and banana peel-activated carbon (BPAC) combined <em>Eichhornia crassipes</em> for phytoremediation as sustainable adsorbents for Ni<sup>2+</sup> ion removal from nickel industry effluents. SA beads' adsorption capacity and removal efficiency exhibited 1357 mg/g and 90.5 %, while BPAC-SA composite beads achieved 1393 mg/g and 92.9 %. Notable bead expansion post-adsorption confirmed strong pollutant interaction, particularly in BPAC-SA beads. Structural characterization via XRD revealed the slight transition from amorphous to crystalline phases, confirming the successful incorporation of BPAC into the SA matrix through ionotropic gelation methods. The BPAC-SA beads displayed a rough, porous morphology with enhanced surface area and bonding potential. At the same time, FTIR spectra showed functional group shifts—especially in <img>OH, <img>CH, carbonyl, and carboxylate bands indicating strong interactions and new bond formations. Real-time monitoring using Internet of Things devices successfully implemented and validated the adsorption kinetics and process efficiency.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"31 ","pages":"Article 102255"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25002373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we demonstrate the effective use of sodium alginate (SA) and banana peel-activated carbon (BPAC) combined Eichhornia crassipes for phytoremediation as sustainable adsorbents for Ni2+ ion removal from nickel industry effluents. SA beads' adsorption capacity and removal efficiency exhibited 1357 mg/g and 90.5 %, while BPAC-SA composite beads achieved 1393 mg/g and 92.9 %. Notable bead expansion post-adsorption confirmed strong pollutant interaction, particularly in BPAC-SA beads. Structural characterization via XRD revealed the slight transition from amorphous to crystalline phases, confirming the successful incorporation of BPAC into the SA matrix through ionotropic gelation methods. The BPAC-SA beads displayed a rough, porous morphology with enhanced surface area and bonding potential. At the same time, FTIR spectra showed functional group shifts—especially in OH, CH, carbonyl, and carboxylate bands indicating strong interactions and new bond formations. Real-time monitoring using Internet of Things devices successfully implemented and validated the adsorption kinetics and process efficiency.

Abstract Image

BPAC-SA微球协同植物修复对工业废水中Ni2+离子吸附的设计与表征:物联网实时监测
在这里,我们展示了海藻酸钠(SA)和香蕉皮活性炭(BPAC)组合的植物修复方法作为镍工业废水中Ni2+离子的可持续吸附剂的有效使用。SA珠的吸附量和去除率分别为1357 mg/g和90.5%,BPAC-SA复合珠的吸附量和去除率分别为1393 mg/g和92.9%。吸附后明显的颗粒膨胀证实了强的污染物相互作用,特别是在BPAC-SA颗粒中。通过x射线衍射(XRD)进行的结构表征显示,BPAC从非晶相到结晶相有轻微的转变,证实了BPAC通过离子化胶凝方法成功地结合到SA基体中。BPAC-SA珠具有粗糙的多孔形态,具有增强的表面积和键合电位。同时,FTIR光谱显示官能团移位,特别是在OH, CH,羰基和羧酸盐波段,表明强相互作用和新键形成。利用物联网设备进行实时监测,成功实现并验证了吸附动力学和工艺效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信