{"title":"Time-dependent active force drives periodic reversal in collective cell migration.","authors":"Chen-He Li,Xu Yin,Shuang-Quan He,Guang-Kui Xu","doi":"10.1016/j.bpj.2025.08.011","DOIUrl":null,"url":null,"abstract":"Collective cell migration is prevalent in the processes of embryo development, wound healing, and cancer metastasis across various space and time scales. While various motion modes have been identified, their relationships with single cell motility and the underlying mechanisms remain poorly understood. In this study, we develop an active vertex model to investigate the spatiotemporal behavior of collective cells confined in annulus domain, accounting for the polarity memory effect of individual cells and the impact of confinement size. We reveal that cells spontaneously undergo periodic reversals in the rotation direction, with the inner boundary acting as the origin of initiation. The polarity delay with velocity and the growth of passive forces contribute to the reversals. The reversal frequency increases with the memory decay rate while remaining largely insensitive to the activity strength. In addition, we propose a polar order parameter to characterize various motion modes across a wide range of parameter spaces. This parameter effectively identifies four distinct dynamic regimes: global rotation (GR), periodic reversal (REV), oscillation (OSC), and local swirling (LS). Our findings establish a framework for understanding the persistence of collective cell migration under geometric confinements and underscore the timescale required for molecular rearrangements during polarization.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.08.011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Collective cell migration is prevalent in the processes of embryo development, wound healing, and cancer metastasis across various space and time scales. While various motion modes have been identified, their relationships with single cell motility and the underlying mechanisms remain poorly understood. In this study, we develop an active vertex model to investigate the spatiotemporal behavior of collective cells confined in annulus domain, accounting for the polarity memory effect of individual cells and the impact of confinement size. We reveal that cells spontaneously undergo periodic reversals in the rotation direction, with the inner boundary acting as the origin of initiation. The polarity delay with velocity and the growth of passive forces contribute to the reversals. The reversal frequency increases with the memory decay rate while remaining largely insensitive to the activity strength. In addition, we propose a polar order parameter to characterize various motion modes across a wide range of parameter spaces. This parameter effectively identifies four distinct dynamic regimes: global rotation (GR), periodic reversal (REV), oscillation (OSC), and local swirling (LS). Our findings establish a framework for understanding the persistence of collective cell migration under geometric confinements and underscore the timescale required for molecular rearrangements during polarization.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.