MRDust: Wireless Implant Data Uplink & Localization via Magnetic Resonance Image Modulation.

IF 4.9
Biqi Rebekah Zhao, Alexander Chou, Robert Peltekov, Elad Alon, Chunlei Liu, Rikky Muller, Michael Lustig
{"title":"MRDust: Wireless Implant Data Uplink & Localization via Magnetic Resonance Image Modulation.","authors":"Biqi Rebekah Zhao, Alexander Chou, Robert Peltekov, Elad Alon, Chunlei Liu, Rikky Muller, Michael Lustig","doi":"10.1109/TBCAS.2025.3598682","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) exhibits rich and clinically useful endogenous contrast mechanisms, which can differentiate soft tissues and are sensitive to flow, diffusion, magnetic susceptibility, blood oxygenation level, and more. However, MRI sensitivity is ultimately constrained by Nuclear Magnetic Resonance (NMR) physics, and its spatiotemporal resolution is limited by SNR and spatial encoding. On the other hand, miniaturized implantable sensors offer highly localized physiological information, yet communication and localization can be challenging when multiple implants are present. This paper introduces the MRDust, an active \"contrast agent\" that integrates active sensor implants with MRI, enabling the direct encoding of highly localized physiological data into MR images to augment the anatomical images. MRDust employs a micrometer-scale on-chip coil to actively modulate the local magnetic field, enabling MR signal amplitude and phase modulation for digital data transmission. Since MRI inherently captures the anatomical tissue structure, this method has the potential to enable simultaneous data communication, localization, and image registration with multiple implants. This paper presents the underlying physical principles, design tradeoffs, and design methodology for this approach. To validate the concept, a 900 × 990 µm<sup>2</sup> chip was designed using TSMC 28 nm technology, with an on-chip coil measuring 630 µm in diameter. The chip was tested with custom hardware in an MR750W GE3T MRI scanner. Successful voxel amplitude modulation is demonstrated with Spin-Echo Echo-Planar-Imaging (SE-EPI) sequence, achieving a contrast-to-noise ratio (CNR) of 25.58 with a power consumption of 130 µW.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3598682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) exhibits rich and clinically useful endogenous contrast mechanisms, which can differentiate soft tissues and are sensitive to flow, diffusion, magnetic susceptibility, blood oxygenation level, and more. However, MRI sensitivity is ultimately constrained by Nuclear Magnetic Resonance (NMR) physics, and its spatiotemporal resolution is limited by SNR and spatial encoding. On the other hand, miniaturized implantable sensors offer highly localized physiological information, yet communication and localization can be challenging when multiple implants are present. This paper introduces the MRDust, an active "contrast agent" that integrates active sensor implants with MRI, enabling the direct encoding of highly localized physiological data into MR images to augment the anatomical images. MRDust employs a micrometer-scale on-chip coil to actively modulate the local magnetic field, enabling MR signal amplitude and phase modulation for digital data transmission. Since MRI inherently captures the anatomical tissue structure, this method has the potential to enable simultaneous data communication, localization, and image registration with multiple implants. This paper presents the underlying physical principles, design tradeoffs, and design methodology for this approach. To validate the concept, a 900 × 990 µm2 chip was designed using TSMC 28 nm technology, with an on-chip coil measuring 630 µm in diameter. The chip was tested with custom hardware in an MR750W GE3T MRI scanner. Successful voxel amplitude modulation is demonstrated with Spin-Echo Echo-Planar-Imaging (SE-EPI) sequence, achieving a contrast-to-noise ratio (CNR) of 25.58 with a power consumption of 130 µW.

MRDust:通过磁共振图像调制的无线植入数据上行和定位。
磁共振成像(MRI)显示了丰富和临床有用的内源性对比机制,可以区分软组织,对血流、扩散、磁化率、血氧水平等敏感。然而,MRI的灵敏度最终受到核磁共振(NMR)物理特性的限制,其时空分辨率受到信噪比和空间编码的限制。另一方面,微型植入式传感器提供高度定位的生理信息,但当多个植入物存在时,通信和定位可能具有挑战性。本文介绍了MRDust,一种将主动传感器植入物与MRI相结合的活性“造影剂”,可以将高度定位的生理数据直接编码到MR图像中,以增强解剖图像。MRDust采用微米级片上线圈主动调制本地磁场,使MR信号的幅度和相位调制用于数字数据传输。由于MRI固有地捕获解剖组织结构,因此该方法具有实现多个植入物同时进行数据通信,定位和图像配准的潜力。本文介绍了这种方法的基本物理原理、设计权衡和设计方法。为了验证这一概念,采用台积电28纳米技术设计了一个900 × 990µm2的芯片,片上线圈直径为630µm。该芯片在MR750W GE3T核磁共振扫描仪上使用定制硬件进行测试。利用自旋回波回波平面成像(SE-EPI)序列成功实现了体素调幅,实现了25.58的对比噪声比(CNR),功耗为130µW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信