Role of placebo samples in observational studies.

IF 1.8 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Journal of Causal Inference Pub Date : 2025-01-01 Epub Date: 2025-03-05 DOI:10.1515/jci-2023-0020
Ting Ye, Qijia He, Shuxiao Chen, Bo Zhang
{"title":"Role of placebo samples in observational studies.","authors":"Ting Ye, Qijia He, Shuxiao Chen, Bo Zhang","doi":"10.1515/jci-2023-0020","DOIUrl":null,"url":null,"abstract":"<p><p>In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.</p>","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"13 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2023-0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.

安慰剂样本在观察性研究中的作用。
在观察性研究中,利用已知的零效应来检测偏差是很常见的。其中一种策略是留出安慰剂样本——不受假设因果关系影响的数据子集。安慰剂样本中效果的存在引起了对无法测量的混杂偏差的担忧,而不存在它有助于证实因果结论。本文描述了一个使用安慰剂样本来检测和消除偏见的框架。我们陈述了识别假设,并基于结果回归、逆概率加权和双稳健方法开发了估计和推理方法。仿真研究了所提出方法的有限样本性能。我们说明了方法使用的经验研究的影响,所得所得税抵免对婴儿健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信