{"title":"Role of placebo samples in observational studies.","authors":"Ting Ye, Qijia He, Shuxiao Chen, Bo Zhang","doi":"10.1515/jci-2023-0020","DOIUrl":null,"url":null,"abstract":"<p><p>In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.</p>","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"13 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2023-0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.