Emerging Roles of Biomolecular Condensates in Pre-mRNA 3' End Processing.

IF 4.8 2区 生物学 Q1 CELL BIOLOGY
Yoseop Yoon, Liang Liu, Cailyx Quan, Yongsheng Shi
{"title":"Emerging Roles of Biomolecular Condensates in Pre-mRNA 3' End Processing.","authors":"Yoseop Yoon, Liang Liu, Cailyx Quan, Yongsheng Shi","doi":"10.1002/wrna.70024","DOIUrl":null,"url":null,"abstract":"<p><p>Biomolecular condensates are membraneless assemblies of proteins and nucleic acids, often formed through liquid-liquid phase separation. They selectively concentrate specific biomolecules and play essential roles in diverse cellular processes and diseases. This review discusses the emerging roles of biomolecular condensates in pre-mRNA 3' end processing, a critical step in mRNA biogenesis. 3' end processing factors are enriched in intrinsically disordered regions and undergo phase separation to form condensates that, in turn, fine-tune the efficiency and specificity of 3' end processing. Additionally, we describe how distinct 3' end processing pathways are spatially and functionally compartmentalized within nuclear biomolecular condensates, such as nuclear speckles and histone locus bodies. Finally, we propose that 3' end processing represents a promising experimental system to investigate fundamental principles underlying biomolecular condensate formation and function. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"16 4","pages":"e70024"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.70024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomolecular condensates are membraneless assemblies of proteins and nucleic acids, often formed through liquid-liquid phase separation. They selectively concentrate specific biomolecules and play essential roles in diverse cellular processes and diseases. This review discusses the emerging roles of biomolecular condensates in pre-mRNA 3' end processing, a critical step in mRNA biogenesis. 3' end processing factors are enriched in intrinsically disordered regions and undergo phase separation to form condensates that, in turn, fine-tune the efficiency and specificity of 3' end processing. Additionally, we describe how distinct 3' end processing pathways are spatially and functionally compartmentalized within nuclear biomolecular condensates, such as nuclear speckles and histone locus bodies. Finally, we propose that 3' end processing represents a promising experimental system to investigate fundamental principles underlying biomolecular condensate formation and function. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.

Abstract Image

Abstract Image

Abstract Image

生物分子凝聚物在前mrna 3'端加工中的新作用。
生物分子凝聚体是蛋白质和核酸的无膜组装体,通常通过液-液相分离形成。它们选择性地浓缩特定的生物分子,在多种细胞过程和疾病中发挥重要作用。本文综述了生物分子凝聚物在mRNA前3'端加工中的新作用,这是mRNA生物发生的关键步骤。3′端加工因子富集于内在无序区域,并发生相分离形成凝聚物,从而微调3′端加工的效率和特异性。此外,我们还描述了核生物分子凝聚体(如核斑点和组蛋白位点体)中不同的3'端加工途径在空间和功能上是如何划分的。最后,我们提出3'端加工是一个很有前途的实验系统,可以研究生物分子凝聚形成和功能的基本原理。本文分类如下:RNA与蛋白质和其他分子的相互作用>蛋白质-RNA识别RNA与蛋白质和其他分子的相互作用> RNA-蛋白质复合物RNA与蛋白质和其他分子的相互作用>蛋白质-RNA相互作用:功能意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信