The generic Markov cohomological Hall algebra is not spherically generated.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-08-13 eCollection Date: 2025-08-01 DOI:10.1098/rsos.250282
Ben Davison
{"title":"The generic Markov cohomological Hall algebra is not spherically generated.","authors":"Ben Davison","doi":"10.1098/rsos.250282","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mi>Q</mi></math> be the Markov quiver, and let <math><mi>W</mi></math> be an infinitely mutable potential for <math><mi>Q</mi></math> . We calculate some low-degree refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants for the resulting Jacobi algebra and use them to show that the critical cohomological Hall algebra <math><msub><mi>H</mi> <mrow><mi>Q</mi> <mo>,</mo> <mi>W</mi></mrow> </msub> </math> is not necessarily spherically generated and is not independent of the choice of infinitely mutable potential <math><mi>W</mi></math> . This leads to a counterexample to a conjecture of Gaiotto <i>et al</i>. (Gaiotto <i>et al</i>. 2024 Categories of line defects and cohomological Hall algebras. <i>arXiv</i>. §2.1), but also suggestions for how to modify it. In the case of generic cubic <math><mi>W</mi></math> , we discuss a way to modify the conjecture by excluding the non-spherical part via the decomposition of <math><msub><mi>H</mi> <mrow><mi>Q</mi> <mo>,</mo> <mi>W</mi></mrow> </msub> </math> according to the characters of a discrete symmetry group.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 8","pages":"250282"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250282","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Let Q be the Markov quiver, and let W be an infinitely mutable potential for Q . We calculate some low-degree refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants for the resulting Jacobi algebra and use them to show that the critical cohomological Hall algebra H Q , W is not necessarily spherically generated and is not independent of the choice of infinitely mutable potential W . This leads to a counterexample to a conjecture of Gaiotto et al. (Gaiotto et al. 2024 Categories of line defects and cohomological Hall algebras. arXiv. §2.1), but also suggestions for how to modify it. In the case of generic cubic W , we discuss a way to modify the conjecture by excluding the non-spherical part via the decomposition of H Q , W according to the characters of a discrete symmetry group.

Abstract Image

一般的马尔可夫上同调霍尔代数不是球上生成的。
设Q为马尔可夫颤振,设W为Q的无限变势。我们计算了得到的Jacobi代数的一些低阶精化Bogomol'nyi-Prasad-Sommerfield (BPS)不变量,并利用它们证明了临界上同调Hall代数H Q, W不一定是球生成的,也不是与无限变势W的选择无关。这就引出了Gaiotto et al. (Gaiotto et al. 2024)猜想的反例(线缺陷和上同霍尔代数的范畴)。出来了。§2.1),以及如何修改它的建议。对于一般的三次对称W,根据离散对称群的特征,通过分解H Q, W,讨论了一种排除非球面部分的修正猜想的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信