{"title":"Red noise in continuous-time stochastic modelling.","authors":"Andreas Morr, Dörte Kreher, Niklas Boers","doi":"10.1098/rsos.250573","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of time-correlated noise is important to applied stochastic modelling. Nevertheless, there is no generally agreed-upon definition of the term red noise in continuous-time stochastic modelling settings. We present here a rigorous argumentation for the Ornstein-Uhlenbeck process integrated against time ( <math> <mrow><msub><mi>U</mi> <mi>t</mi></msub> <mrow><mi>d</mi></mrow> <mi>t</mi></mrow> </math> ) as a uniquely appropriate red noise implementation. We also identify the term <math> <mrow><mrow><mi>d</mi></mrow> <msub><mi>U</mi> <mi>t</mi></msub> </mrow> </math> as an erroneous formulation of red noise commonly found in the applied literature. To this end, we prove a theorem linking properties of the power spectral density (PSD) to classes of Itô-differentials. The commonly ascribed red noise attribute of a PSD decaying as <math><mrow><mi>S</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo> <mo>∼</mo></mrow> <mrow><msup><mi>ω</mi> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </mrow> </math> restricts the range of possible Itô-differentials <math> <mrow><mrow><mi>d</mi></mrow> <msub><mi>Y</mi> <mi>t</mi></msub> <mo>=</mo></mrow> <mrow><msub><mi>α</mi> <mi>t</mi></msub> <mrow><mi>d</mi></mrow> <mi>t</mi> <mo>+</mo></mrow> <mrow><msub><mi>β</mi> <mi>t</mi></msub> <mrow><mi>d</mi></mrow> <msub><mi>W</mi> <mi>t</mi></msub> </mrow> </math> . In particular, any such differential with continuous, square-integrable integrands must have a vanishing martingale part, i.e. <math> <mrow><mrow><mi>d</mi></mrow> <msub><mi>Y</mi> <mi>t</mi></msub> <mo>=</mo></mrow> <mrow><msub><mi>α</mi> <mi>t</mi></msub> <mrow><mi>d</mi></mrow> <mi>t</mi></mrow> </math> for almost all <math><mrow><mi>t</mi> <mo>≥</mo></mrow> <mrow><mn>0</mn></mrow> </math> . We further point out that taking <math><mrow><mo>(</mo> <msub><mi>α</mi> <mi>t</mi></msub> <msub><mo>)</mo> <mrow><mi>t</mi> <mo>≥</mo> <mn>0</mn></mrow> </msub> </mrow> </math> to be an Ornstein-Uhlenbeck process constitutes a uniquely relevant model choice due to its Gauss-Markov property. The erroneous use of the noise term <math> <mrow><mrow><mi>d</mi></mrow> <msub><mi>U</mi> <mi>t</mi></msub> </mrow> </math> as red noise and its consequences are discussed in two examples from the literature.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 8","pages":"250573"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250573","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of time-correlated noise is important to applied stochastic modelling. Nevertheless, there is no generally agreed-upon definition of the term red noise in continuous-time stochastic modelling settings. We present here a rigorous argumentation for the Ornstein-Uhlenbeck process integrated against time ( ) as a uniquely appropriate red noise implementation. We also identify the term as an erroneous formulation of red noise commonly found in the applied literature. To this end, we prove a theorem linking properties of the power spectral density (PSD) to classes of Itô-differentials. The commonly ascribed red noise attribute of a PSD decaying as restricts the range of possible Itô-differentials . In particular, any such differential with continuous, square-integrable integrands must have a vanishing martingale part, i.e. for almost all . We further point out that taking to be an Ornstein-Uhlenbeck process constitutes a uniquely relevant model choice due to its Gauss-Markov property. The erroneous use of the noise term as red noise and its consequences are discussed in two examples from the literature.
时间相关噪声的概念对于应用随机建模是很重要的。然而,在连续时间随机建模设置中,红噪声一词没有普遍商定的定义。我们在这里提出了一个严格的论证,Ornstein-Uhlenbeck过程与时间(U t d t)集成为唯一合适的红噪声实现。我们还确定术语d U t是应用文献中常见的红噪声的错误表述。为此,我们证明了一个将功率谱密度(PSD)的性质与Itô-differentials类联系起来的定理。通常认为衰减为S (ω) ~ ω - 2的PSD的红噪声属性限制了Itô-differentials d Y t = α t d t + β t d W t的可能范围。特别地,任何具有连续的,平方可积的被积函数的微分必须有一个消失的鞅部分,即对于几乎所有的t≥0,dt = t dt。我们进一步指出,取(α t) t≥0为一个Ornstein-Uhlenbeck过程,由于其高斯-马尔可夫性质,构成了一个独特的相关模型选择。从文献中的两个例子中讨论了错误地使用噪声术语d U t作为红噪声及其后果。
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.