{"title":"Transition metal coordination polymer-derived materials for supercapacitor applications: recent advances and future perspectives.","authors":"Saifullahi Kabiru Sa'adu, Cheng Seong Khe, Muhammad Fadhlullah Abd Shukur, Kwok Feng Chong, Chin Wei Lai, Kok Yeow You, Nik Roselina Nik Roseley, Eslam Aboelazm","doi":"10.1098/rsos.250919","DOIUrl":null,"url":null,"abstract":"<p><p>With the rising demand for efficient, sustainable and scalable energy storage, researchers are continuously exploring innovative materials for next-generation supercapacitors. Among these, transition metal coordination polymer (TMCP)-derived materials have emerged as promising candidates due to their high porosity, redox activity and structural adaptability. These materials offer significant potential for energy storage, but challenges like low electrical conductivity, structural instability and limited charge retention have restricted their widespread application. To overcome these hurdles, researchers have developed transformation strategies such as carbonization, phosphorization, sulfidation and oxide formation, enhancing the conductivity, stability and overall electrochemical performance of TMCPs. This review investigates the latest breakthroughs in TMCP-derived electrode materials, highlighting key advancements in synthesis techniques, structural engineering and hybrid material integration to improve charge transport and long-term durability. The incorporation of green chemistry principles, such as low-temperature synthesis, the use of non-toxic precursors, and strategies for recycling or reducing harmful byproducts, is highlighted, consequently promoting the fabrication of environmentally friendly supercapacitors. Furthermore, it explores how nanostructured designs and composite materials are unlocking new possibilities for high-performance supercapacitors. It also provides a perspective on the future of TMCPs in energy storage by fusing theoretical insights with experimental evidence. Theoretical frameworks like density functional theory and emerging machine learning models are other methods employed to better understand redox behaviour and drive material design. It addresses present issues and suggests viable future directions for their useful application.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 8","pages":"250919"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250919","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the rising demand for efficient, sustainable and scalable energy storage, researchers are continuously exploring innovative materials for next-generation supercapacitors. Among these, transition metal coordination polymer (TMCP)-derived materials have emerged as promising candidates due to their high porosity, redox activity and structural adaptability. These materials offer significant potential for energy storage, but challenges like low electrical conductivity, structural instability and limited charge retention have restricted their widespread application. To overcome these hurdles, researchers have developed transformation strategies such as carbonization, phosphorization, sulfidation and oxide formation, enhancing the conductivity, stability and overall electrochemical performance of TMCPs. This review investigates the latest breakthroughs in TMCP-derived electrode materials, highlighting key advancements in synthesis techniques, structural engineering and hybrid material integration to improve charge transport and long-term durability. The incorporation of green chemistry principles, such as low-temperature synthesis, the use of non-toxic precursors, and strategies for recycling or reducing harmful byproducts, is highlighted, consequently promoting the fabrication of environmentally friendly supercapacitors. Furthermore, it explores how nanostructured designs and composite materials are unlocking new possibilities for high-performance supercapacitors. It also provides a perspective on the future of TMCPs in energy storage by fusing theoretical insights with experimental evidence. Theoretical frameworks like density functional theory and emerging machine learning models are other methods employed to better understand redox behaviour and drive material design. It addresses present issues and suggests viable future directions for their useful application.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.