Isovalerylspiramycin I Reprograms the Immunosuppressive and Temozolomide-Resistant Microenvironment by Inhibiting the Frizzled-5/Wnt/β-Catenin Pathway in Glioblastoma.
{"title":"Isovalerylspiramycin I Reprograms the Immunosuppressive and Temozolomide-Resistant Microenvironment by Inhibiting the Frizzled-5/Wnt/β-Catenin Pathway in Glioblastoma.","authors":"Xin Luo, Xiangyang Zhong, Tianci Zeng, Xiaodie Li, Tao Yang, Qu Yue, Yufei Lan, Sui Chen, Zhao Wang, Manqing Zhang, Boming Zuo, Yuankai Wang, Yixiong Shen, Jiankun Lu, Boyang Liu, Hongbo Guo","doi":"10.34133/research.0828","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM), the most prevalent and lethal primary brain malignancy in adults, currently lacks treatment effective options. Repurposing existing pharmaceutical agents as novel therapeutic modalities represents a viable strategy for efficiently utilizing resources. Here, we demonstrated that Isovalerylspiramycin I (ISP-I), the active component of a novel macrolide antibiotic, exerts a synergistic effect with temozolomide (TMZ) to enhance anti-GBM efficacy. ISP-I potently induced cytotoxicity and apoptosis through the induction of DNA double-strand breaks. The synergistic activity (combination index < 1) was confirmed for ISP-I in combination with TMZ against GBM. Additionally, ISP-I was found to induce immunogenic cell death, as evidenced by increased adenosine triphosphate release and calreticulin exposure. In murine models, ISP-I increased tumor-infiltrating CD8<sup>+</sup> T cells, enhanced effector subsets, and reduced exhausted subsets. Mechanistically, ISP-I targeted the Frizzled-5 (FZD5)/Wnt/β-catenin signaling pathway, resulting in suppression of GSK-3β phosphorylation. This event subsequently increased β-catenin phosphorylation, reducing its translocation into the nucleus. Consequently, the binding of transcription factors (T-cell factor 1/lymphoid enhancer factor 1) to promoters of <i>CD274</i> and O<sup>6</sup>-methylguanine-DNA methyltransferase (<i>MGMT</i>) was impeded, thereby enhancing GBM cell susceptibility to TMZ. These findings elucidate the mechanisms underlying ISP-I's therapeutic efficacy in GBM and provide essential evidence for its clinical translation and combinatorial therapeutic strategies.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0828"},"PeriodicalIF":10.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0828","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM), the most prevalent and lethal primary brain malignancy in adults, currently lacks treatment effective options. Repurposing existing pharmaceutical agents as novel therapeutic modalities represents a viable strategy for efficiently utilizing resources. Here, we demonstrated that Isovalerylspiramycin I (ISP-I), the active component of a novel macrolide antibiotic, exerts a synergistic effect with temozolomide (TMZ) to enhance anti-GBM efficacy. ISP-I potently induced cytotoxicity and apoptosis through the induction of DNA double-strand breaks. The synergistic activity (combination index < 1) was confirmed for ISP-I in combination with TMZ against GBM. Additionally, ISP-I was found to induce immunogenic cell death, as evidenced by increased adenosine triphosphate release and calreticulin exposure. In murine models, ISP-I increased tumor-infiltrating CD8+ T cells, enhanced effector subsets, and reduced exhausted subsets. Mechanistically, ISP-I targeted the Frizzled-5 (FZD5)/Wnt/β-catenin signaling pathway, resulting in suppression of GSK-3β phosphorylation. This event subsequently increased β-catenin phosphorylation, reducing its translocation into the nucleus. Consequently, the binding of transcription factors (T-cell factor 1/lymphoid enhancer factor 1) to promoters of CD274 and O6-methylguanine-DNA methyltransferase (MGMT) was impeded, thereby enhancing GBM cell susceptibility to TMZ. These findings elucidate the mechanisms underlying ISP-I's therapeutic efficacy in GBM and provide essential evidence for its clinical translation and combinatorial therapeutic strategies.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.