Maclaine A Parish, Jaiprasath Sachithanandham, Lizeth Gutierrez, Han-Sol Park, Anna Yin, Katerina Roznik, Patrick Creisher, John S Lee, Laura A St Clair, Annie Werner, Catherine Pilgrim-Grayson, Lea Berhane, Hana Golding, Patrick Shea, Katherine Fenstermacher, Richard Rothman, Irina Burd, Jeanne Sheffield, Andrea L Cox, Andrew Pekosz, Sabra L Klein
{"title":"Pregnancy reduces COVID-19 vaccine immunity against novel variants.","authors":"Maclaine A Parish, Jaiprasath Sachithanandham, Lizeth Gutierrez, Han-Sol Park, Anna Yin, Katerina Roznik, Patrick Creisher, John S Lee, Laura A St Clair, Annie Werner, Catherine Pilgrim-Grayson, Lea Berhane, Hana Golding, Patrick Shea, Katherine Fenstermacher, Richard Rothman, Irina Burd, Jeanne Sheffield, Andrea L Cox, Andrew Pekosz, Sabra L Klein","doi":"10.1038/s41541-025-01236-4","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnant women are at heightened risk for severe outcomes from infectious diseases like COVID-19, yet were not included in initial vaccine trials, which may contribute to low booster uptake (15% or lower). We explored the serological and cellular responses to COVID-19 mRNA booster vaccines (i.e., ancestral and BA.5) in pregnant and age-matched, non-pregnant females to identify how pregnancy affects immunity against the vaccine and novel variants. Antibodies from pregnant women were less cross-reactive to non-vaccine antigens, including XBB.1.5 and JN.1. Non-pregnant females showed greater IgG1:IgG3 ratios and neutralization against all variants. In contrast, pregnant women had lower IgG1:IgG3 ratios and neutralization but increased antibody-dependent NK cell cytokine production and neutrophil phagocytosis, especially against novel variants. Pregnancy increased memory CD4+ T cells, IFNγ production, monofunctional dominance, and fatty acid oxidation. Pregnancy may reduce the breadth, composition, and magnitude of humoral and cellular immunity, particularly in response to novel variants.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"191"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01236-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pregnant women are at heightened risk for severe outcomes from infectious diseases like COVID-19, yet were not included in initial vaccine trials, which may contribute to low booster uptake (15% or lower). We explored the serological and cellular responses to COVID-19 mRNA booster vaccines (i.e., ancestral and BA.5) in pregnant and age-matched, non-pregnant females to identify how pregnancy affects immunity against the vaccine and novel variants. Antibodies from pregnant women were less cross-reactive to non-vaccine antigens, including XBB.1.5 and JN.1. Non-pregnant females showed greater IgG1:IgG3 ratios and neutralization against all variants. In contrast, pregnant women had lower IgG1:IgG3 ratios and neutralization but increased antibody-dependent NK cell cytokine production and neutrophil phagocytosis, especially against novel variants. Pregnancy increased memory CD4+ T cells, IFNγ production, monofunctional dominance, and fatty acid oxidation. Pregnancy may reduce the breadth, composition, and magnitude of humoral and cellular immunity, particularly in response to novel variants.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.