Investigate the Efficacy of Dual-Target Electrical Stimulation in the Treatment of Knee Osteoarthritis After Stroke and its Effect on Cerebral Cortical Activity: A Randomized Controlled Trial.
Chun-Ya Xia, Hui-Fang Tian, Xu-Yan Ren, Zhi-Hang Xiao, Hui-An Chen, Yi-Jia Yin, Le-Chi Zhang, Si-Yan Cai, Ting-Ting Li, Jun Zou, Jie Bao, Min Su
{"title":"Investigate the Efficacy of Dual-Target Electrical Stimulation in the Treatment of Knee Osteoarthritis After Stroke and its Effect on Cerebral Cortical Activity: A Randomized Controlled Trial.","authors":"Chun-Ya Xia, Hui-Fang Tian, Xu-Yan Ren, Zhi-Hang Xiao, Hui-An Chen, Yi-Jia Yin, Le-Chi Zhang, Si-Yan Cai, Ting-Ting Li, Jun Zou, Jie Bao, Min Su","doi":"10.1155/np/2886215","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial direct current stimulation (tDCS) and transcutaneous electrical nerve stimulation (TENS) are both recognized for their analgesic effects; however, evidence suggests limitations in their efficacy when applied to knee osteoarthritis (KOA) after stroke. This study aimed to assess the efficacy and cortical activity impact of a dual-target electrical stimulation approach combining tDCS and TENS in the treatment of KOA after stroke. We hypothesized that the combination of tDCS with TENS could more effectively address KOA after stroke by enhancing brain activity through the induction of neural oscillations. To test this hypothesis, a double-blind, randomized trial was conducted with 30 participants receiving either TENS + tDCS or TENS + sham tDCS over an 8-week period, from Monday to Friday. Electroencephalograms (EEGs), Brief Pain Inventory (BPI), visual analog scale (VAS), stride length, cadence, 6-min walk test (6 MWT), knee range of motion (ROM), and quadriceps strength were collected pre- and poststimulation. Pain indicators were analyzed using <i>t</i>-tests for continuous variables and chi-square tests for categorical variables, with repeated measures ANOVA employed to explore changes and interactions over time. For EEG analysis, paired <i>t</i>-tests were utilized to investigate changes in brain regions before and after treatment on the affected side, with visual analysis conducted subsequently. The results indicated that the combined treatment led to significant improvements in the affected hemisphere, with significant changes observed in α1, α2, and β power. Additionally, significant group× time interaction effects were noted for BPI, VAS, stride length, cadence, and 6MWT. The study concludes that dual-target electrostimulation using tDCS combined with TENS significantly ameliorates knee joint inflammation following stroke by acting on the cerebral cortex and target organs. <b>Trial Registration:</b> Chinese Clinical Trial Registry: ChiCTR2200064735.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2025 ","pages":"2886215"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/np/2886215","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Transcranial direct current stimulation (tDCS) and transcutaneous electrical nerve stimulation (TENS) are both recognized for their analgesic effects; however, evidence suggests limitations in their efficacy when applied to knee osteoarthritis (KOA) after stroke. This study aimed to assess the efficacy and cortical activity impact of a dual-target electrical stimulation approach combining tDCS and TENS in the treatment of KOA after stroke. We hypothesized that the combination of tDCS with TENS could more effectively address KOA after stroke by enhancing brain activity through the induction of neural oscillations. To test this hypothesis, a double-blind, randomized trial was conducted with 30 participants receiving either TENS + tDCS or TENS + sham tDCS over an 8-week period, from Monday to Friday. Electroencephalograms (EEGs), Brief Pain Inventory (BPI), visual analog scale (VAS), stride length, cadence, 6-min walk test (6 MWT), knee range of motion (ROM), and quadriceps strength were collected pre- and poststimulation. Pain indicators were analyzed using t-tests for continuous variables and chi-square tests for categorical variables, with repeated measures ANOVA employed to explore changes and interactions over time. For EEG analysis, paired t-tests were utilized to investigate changes in brain regions before and after treatment on the affected side, with visual analysis conducted subsequently. The results indicated that the combined treatment led to significant improvements in the affected hemisphere, with significant changes observed in α1, α2, and β power. Additionally, significant group× time interaction effects were noted for BPI, VAS, stride length, cadence, and 6MWT. The study concludes that dual-target electrostimulation using tDCS combined with TENS significantly ameliorates knee joint inflammation following stroke by acting on the cerebral cortex and target organs. Trial Registration: Chinese Clinical Trial Registry: ChiCTR2200064735.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.