Engineering single-layered poly(amidoamine) dendrimer microcapsules for enhanced cellular uptake.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Danqing Yu, Xiaoqiang Zhang, Jianmei Han, Xingjie Zan, Yan Guo, Xuyang Chen
{"title":"Engineering single-layered poly(amidoamine) dendrimer microcapsules for enhanced cellular uptake.","authors":"Danqing Yu, Xiaoqiang Zhang, Jianmei Han, Xingjie Zan, Yan Guo, Xuyang Chen","doi":"10.1080/09205063.2025.2543942","DOIUrl":null,"url":null,"abstract":"<p><p>Microcapsules are considered as one of the most promising drug carriers due to their exceptional characteristics. The cellular uptake of microcapsules is determined by physicochemical properties, yet comprehensive studies on thickness and shape effects are limited. In this study, we developed single-layered poly(amidoamine) (PAMAM) dendrimer microcapsules with tunable thicknesses and morphologies to systematically investigate their cellular internalization. By varying PAMAM generations (G2-G8), the wall thickness can be tuned within the range of 19.3-53.7 nm, while the microcapsule shapes can be determined by the distinct morphologies of the CaCO<sub>3</sub> templates (spherical, peanut-like, dumbbell-like). Cellular uptake studies in DC2.4 cells revealed significant thickness- and shape-dependent trends: among spherical microcapsules, OPC/PAMAM-G6 microcapsules with a thickness of 43.5 nm exhibited higher internalization efficiency than their counterparts, while among OPC/PAMAM-G6 microcapsules, dumbbell-like microcapsules outperformed spherical and peanut-like microcapsules. Notably, dumbbell-shaped microcapsules with negative surface charge (-11.8 mV) demonstrated superior biocompatibility and uptake kinetics. This study demonstrates the structural diversity and functional versatility of PAMAM microcapsules by utilizing oligomeric proanthocyanidins (OPC), proposing a simple and universal method for preparing polyphenol/polymer microcapsules that can be applied to practical drug delivery systems.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-18"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2543942","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microcapsules are considered as one of the most promising drug carriers due to their exceptional characteristics. The cellular uptake of microcapsules is determined by physicochemical properties, yet comprehensive studies on thickness and shape effects are limited. In this study, we developed single-layered poly(amidoamine) (PAMAM) dendrimer microcapsules with tunable thicknesses and morphologies to systematically investigate their cellular internalization. By varying PAMAM generations (G2-G8), the wall thickness can be tuned within the range of 19.3-53.7 nm, while the microcapsule shapes can be determined by the distinct morphologies of the CaCO3 templates (spherical, peanut-like, dumbbell-like). Cellular uptake studies in DC2.4 cells revealed significant thickness- and shape-dependent trends: among spherical microcapsules, OPC/PAMAM-G6 microcapsules with a thickness of 43.5 nm exhibited higher internalization efficiency than their counterparts, while among OPC/PAMAM-G6 microcapsules, dumbbell-like microcapsules outperformed spherical and peanut-like microcapsules. Notably, dumbbell-shaped microcapsules with negative surface charge (-11.8 mV) demonstrated superior biocompatibility and uptake kinetics. This study demonstrates the structural diversity and functional versatility of PAMAM microcapsules by utilizing oligomeric proanthocyanidins (OPC), proposing a simple and universal method for preparing polyphenol/polymer microcapsules that can be applied to practical drug delivery systems.

工程单层聚(氨基胺)树状聚合物微胶囊增强细胞摄取。
微胶囊由于其独特的特性被认为是最有前途的药物载体之一。微胶囊的细胞摄取是由理化性质决定的,但对其厚度和形状影响的综合研究还很有限。在这项研究中,我们开发了单层聚氨基胺(PAMAM)树状分子微胶囊,具有可调的厚度和形态,以系统地研究它们的细胞内化。通过改变PAMAM代(G2-G8),可以在19.3-53.7 nm范围内调节壁厚,而微胶囊的形状可以通过CaCO3模板的不同形态(球形、花生状、哑铃状)来确定。对DC2.4细胞的细胞摄取研究显示出明显的厚度和形状依赖趋势:在球形微胶囊中,厚度为43.5 nm的OPC/PAMAM-G6微胶囊的内化效率高于同类微胶囊,而在OPC/PAMAM-G6微胶囊中,哑铃状微胶囊的内化效率优于球形和花生状微胶囊。值得注意的是,具有负表面电荷(-11.8 mV)的哑铃形微胶囊表现出良好的生物相容性和摄取动力学。本研究以低聚原花青素(OPC)为原料,展示了PAMAM微胶囊的结构多样性和功能通用性,提出了一种简单通用的制备多酚/聚合物微胶囊的方法,可应用于实际的给药系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信