Naomi-Eunicia Paval, Olga Adriana Căliman-Sturdza, Andrei Lobiuc, Mihai Dimian, Ioan-Ovidiu Sirbu, Mihai Covasa
{"title":"MicroRNAs in long COVID: roles, diagnostic biomarker potential and detection.","authors":"Naomi-Eunicia Paval, Olga Adriana Căliman-Sturdza, Andrei Lobiuc, Mihai Dimian, Ioan-Ovidiu Sirbu, Mihai Covasa","doi":"10.1186/s40246-025-00810-0","DOIUrl":null,"url":null,"abstract":"<p><p>Long COVID or Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), marked by persistent symptoms lasting weeks to months after acute SARS-CoV-2 infection, affects multiple organ systems including the respiratory, cardiovascular, neurological, gastrointestinal, and renal systems. These prolonged effects stem from chronic inflammation, immune dysregulation, and direct viral injury. MicroRNAs (miRNAs)-small non-coding RNAs involved in gene regulation-play a pivotal role in this process by modulating immune responses, inflammation, and cellular stress. Altered miRNA expression patterns during and after infection contribute to the pathogenesis of Long COVID. While conventional miRNA detection techniques have been valuable, they face limitations in sensitivity, throughput, and detecting RNA modifications. This review highlights Oxford Nanopore Sequencing (ONS) as a promising alternative, offering real-time, long-read, amplification-free RNA sequencing that preserves native modifications. ONS enables direct sequencing of full-length miRNAs and their precursors, providing novel insights into miRNA processing and regulatory roles. Despite current challenges with short-read accuracy, ongoing technical advances are improving ONS performance. Its integration in miRNA profiling holds significant potential for uncovering novel regulatory interactions and advancing clinical biomarker discovery in Long COVID and other conditions.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"19 1","pages":"90"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12352008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-025-00810-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Long COVID or Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), marked by persistent symptoms lasting weeks to months after acute SARS-CoV-2 infection, affects multiple organ systems including the respiratory, cardiovascular, neurological, gastrointestinal, and renal systems. These prolonged effects stem from chronic inflammation, immune dysregulation, and direct viral injury. MicroRNAs (miRNAs)-small non-coding RNAs involved in gene regulation-play a pivotal role in this process by modulating immune responses, inflammation, and cellular stress. Altered miRNA expression patterns during and after infection contribute to the pathogenesis of Long COVID. While conventional miRNA detection techniques have been valuable, they face limitations in sensitivity, throughput, and detecting RNA modifications. This review highlights Oxford Nanopore Sequencing (ONS) as a promising alternative, offering real-time, long-read, amplification-free RNA sequencing that preserves native modifications. ONS enables direct sequencing of full-length miRNAs and their precursors, providing novel insights into miRNA processing and regulatory roles. Despite current challenges with short-read accuracy, ongoing technical advances are improving ONS performance. Its integration in miRNA profiling holds significant potential for uncovering novel regulatory interactions and advancing clinical biomarker discovery in Long COVID and other conditions.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.