Yu-Zhen Liu , Pei-Fang Su , An-Shun Tai , Meng-Ru Shen , Yi-Shan Tsai
{"title":"Artificial intelligence-driven body composition analysis enhances chemotherapy toxicity prediction in colorectal cancer","authors":"Yu-Zhen Liu , Pei-Fang Su , An-Shun Tai , Meng-Ru Shen , Yi-Shan Tsai","doi":"10.1016/j.clnesp.2025.08.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Body surface area (BSA)-based chemotherapy dosing remains standard despite its limitations in predicting toxicity. Variations in body composition, particularly skeletal muscle and adipose tissue, influence drug metabolism and toxicity risk. This study aims to investigate the mediating role of body composition in the relationship between BSA-based dosing and dose-limiting toxicities (DLTs) in colorectal cancer patients receiving oxaliplatin-based chemotherapy.</div></div><div><h3>Methods</h3><div>We retrospectively analyzed 483 stage III colorectal cancer patients treated at National Cheng Kung University Hospital (2013–2021). An artificial intelligence (AI)-driven algorithm quantified skeletal muscle and adipose tissue compartments from lumbar 3 (L3) vertebral-level computed tomography (CT) scans. Mediation analysis evaluated body composition's role in chemotherapy-related toxicities.</div></div><div><h3>Results</h3><div>Among the cohort, 18.2 % (n = 88) experienced DLTs. While BSA alone was not significantly associated with DLTs (OR = 0.473, p = 0.376), increased intramuscular adipose tissue (IMAT) significantly predicted higher DLT risk (OR = 1.047, p = 0.038), whereas skeletal muscle area was protective. Mediation analysis confirmed that IMAT partially mediated the relationship between BSA and DLTs (indirect effect: 0.05, p = 0.040), highlighting adipose infiltration's role in chemotherapy toxicity.</div></div><div><h3>Conclusion</h3><div>BSA-based dosing inadequately accounts for interindividual variations in chemotherapy tolerance. AI-assisted body composition analysis provides a precision oncology framework for identifying high-risk patients and optimizing chemotherapy regimens. Prospective validation is warranted to integrate body composition into routine clinical decision-making.</div></div>","PeriodicalId":10352,"journal":{"name":"Clinical nutrition ESPEN","volume":"69 ","pages":"Pages 696-702"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical nutrition ESPEN","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405457725028992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Body surface area (BSA)-based chemotherapy dosing remains standard despite its limitations in predicting toxicity. Variations in body composition, particularly skeletal muscle and adipose tissue, influence drug metabolism and toxicity risk. This study aims to investigate the mediating role of body composition in the relationship between BSA-based dosing and dose-limiting toxicities (DLTs) in colorectal cancer patients receiving oxaliplatin-based chemotherapy.
Methods
We retrospectively analyzed 483 stage III colorectal cancer patients treated at National Cheng Kung University Hospital (2013–2021). An artificial intelligence (AI)-driven algorithm quantified skeletal muscle and adipose tissue compartments from lumbar 3 (L3) vertebral-level computed tomography (CT) scans. Mediation analysis evaluated body composition's role in chemotherapy-related toxicities.
Results
Among the cohort, 18.2 % (n = 88) experienced DLTs. While BSA alone was not significantly associated with DLTs (OR = 0.473, p = 0.376), increased intramuscular adipose tissue (IMAT) significantly predicted higher DLT risk (OR = 1.047, p = 0.038), whereas skeletal muscle area was protective. Mediation analysis confirmed that IMAT partially mediated the relationship between BSA and DLTs (indirect effect: 0.05, p = 0.040), highlighting adipose infiltration's role in chemotherapy toxicity.
Conclusion
BSA-based dosing inadequately accounts for interindividual variations in chemotherapy tolerance. AI-assisted body composition analysis provides a precision oncology framework for identifying high-risk patients and optimizing chemotherapy regimens. Prospective validation is warranted to integrate body composition into routine clinical decision-making.
期刊介绍:
Clinical Nutrition ESPEN is an electronic-only journal and is an official publication of the European Society for Clinical Nutrition and Metabolism (ESPEN). Nutrition and nutritional care have gained wide clinical and scientific interest during the past decades. The increasing knowledge of metabolic disturbances and nutritional assessment in chronic and acute diseases has stimulated rapid advances in design, development and clinical application of nutritional support. The aims of ESPEN are to encourage the rapid diffusion of knowledge and its application in the field of clinical nutrition and metabolism. Published bimonthly, Clinical Nutrition ESPEN focuses on publishing articles on the relationship between nutrition and disease in the setting of basic science and clinical practice. Clinical Nutrition ESPEN is available to all members of ESPEN and to all subscribers of Clinical Nutrition.