ISOSNet: a unified framework for cone photoreceptor detection and inner segment and outer segment length measurement from AO-OCT B-scans.

IF 3.2 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-07-17 eCollection Date: 2025-08-01 DOI:10.1364/BOE.563128
Mengxi Zhou, Yue Zhang, Eli Kirkendall, Amin Karimi Monsefi, Matthew Wolfe, Kiran A Chitkara, Stacey S Choi, Nathan Doble, Srinivasan Parthasarathy, Rajiv Ramnath
{"title":"ISOSNet: a unified framework for cone photoreceptor detection and inner segment and outer segment length measurement from AO-OCT B-scans.","authors":"Mengxi Zhou, Yue Zhang, Eli Kirkendall, Amin Karimi Monsefi, Matthew Wolfe, Kiran A Chitkara, Stacey S Choi, Nathan Doble, Srinivasan Parthasarathy, Rajiv Ramnath","doi":"10.1364/BOE.563128","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive optics-optical coherence tomography (AO-OCT) enables cellular-level in vivo visualization of cone photoreceptors in the human retina. Cone biomarkers, such as density, inner segment (IS), and outer segment (OS) lengths, are potentially important for the early detection of many outer retinal conditions. However, their dense spatial packing necessitates automated analytical methods, and most existing approaches focus primarily on cone detection without addressing their detailed structural characteristics. To address this limitation, a unified neural network, termed ISOSNet, is introduced for simultaneous cone detection and IS/OS length measurement. Labeled AO-OCT B-scan datasets, encompassing healthy individuals across multiple retinal locations, were collected for model training and evaluation. Experimental results demonstrate an F1 score of 0.886 for cone detection and relative error rates of 6% and 11% for IS and OS length measurement, respectively. Validation on images from diseased retinas-despite the model being trained only on healthy retina data-highlights the generalizability of the proposed framework.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 8","pages":"3237-3254"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.563128","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive optics-optical coherence tomography (AO-OCT) enables cellular-level in vivo visualization of cone photoreceptors in the human retina. Cone biomarkers, such as density, inner segment (IS), and outer segment (OS) lengths, are potentially important for the early detection of many outer retinal conditions. However, their dense spatial packing necessitates automated analytical methods, and most existing approaches focus primarily on cone detection without addressing their detailed structural characteristics. To address this limitation, a unified neural network, termed ISOSNet, is introduced for simultaneous cone detection and IS/OS length measurement. Labeled AO-OCT B-scan datasets, encompassing healthy individuals across multiple retinal locations, were collected for model training and evaluation. Experimental results demonstrate an F1 score of 0.886 for cone detection and relative error rates of 6% and 11% for IS and OS length measurement, respectively. Validation on images from diseased retinas-despite the model being trained only on healthy retina data-highlights the generalizability of the proposed framework.

ISOSNet:一个统一的框架,用于锥体光感受器检测和AO-OCT b扫描的内段和外段长度测量。
自适应光学-光学相干断层扫描(AO-OCT)实现了人类视网膜锥体光感受器的细胞水平体内可视化。视锥生物标志物,如密度、内段(IS)和外段(OS)长度,对于早期检测许多视网膜外病变具有潜在的重要意义。然而,它们密集的空间包装需要自动化的分析方法,大多数现有的方法主要集中在锥体检测上,而没有解决它们的详细结构特征。为了解决这一限制,引入了一个统一的神经网络,称为ISOSNet,用于同时检测锥体和is /OS长度测量。收集标记的AO-OCT b扫描数据集,包括多个视网膜位置的健康个体,用于模型训练和评估。实验结果表明,锥体检测的F1分数为0.886,IS和OS长度测量的相对错误率分别为6%和11%。对病变视网膜图像的验证——尽管模型仅在健康视网膜数据上进行训练——突出了所提出框架的泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信