Electrochemical-assisted scattering imaging system for lymphoma cell classification using machine learning.

IF 3.2 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2025-07-29 eCollection Date: 2025-08-01 DOI:10.1364/BOE.569911
Linyan Xie, Ning Zhang, Kai Yang, Mengfei Wang, Xiangyu Wei, Qiongqiong Ren
{"title":"Electrochemical-assisted scattering imaging system for lymphoma cell classification using machine learning.","authors":"Linyan Xie, Ning Zhang, Kai Yang, Mengfei Wang, Xiangyu Wei, Qiongqiong Ren","doi":"10.1364/BOE.569911","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphoma is one of the most common malignancies globally, making early diagnosis crucial for improving survival. This study introduces an electrochemical-assisted scattering imaging system (ESIS) for lymphoma cell classification. The system integrates scattering imaging with electrochemical measurements, using a fiber-optic probe for scattering excitation and a 3D rGO-Ti<sub>3</sub>C<sub>2</sub>-MWCNTs composite electrode to simultaneously monitor H<sub>2</sub>O<sub>2</sub> release. Data from these modalities are combined with an SVM algorithm, improving classification performance significantly, with the AUC for HMy2.CIR cells increased from 0.79 to 0.97. The dual-modality approach achieved 90% accuracy, outperforming scattering imaging alone. This method enhances lymphoma subtype differentiation and shows promise for personalized cancer therapies.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 8","pages":"3424-3436"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339310/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.569911","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Lymphoma is one of the most common malignancies globally, making early diagnosis crucial for improving survival. This study introduces an electrochemical-assisted scattering imaging system (ESIS) for lymphoma cell classification. The system integrates scattering imaging with electrochemical measurements, using a fiber-optic probe for scattering excitation and a 3D rGO-Ti3C2-MWCNTs composite electrode to simultaneously monitor H2O2 release. Data from these modalities are combined with an SVM algorithm, improving classification performance significantly, with the AUC for HMy2.CIR cells increased from 0.79 to 0.97. The dual-modality approach achieved 90% accuracy, outperforming scattering imaging alone. This method enhances lymphoma subtype differentiation and shows promise for personalized cancer therapies.

基于机器学习的淋巴瘤细胞分类电化学辅助散射成像系统。
淋巴瘤是全球最常见的恶性肿瘤之一,早期诊断对提高生存率至关重要。本研究介绍了一种用于淋巴瘤细胞分类的电化学辅助散射成像系统(ESIS)。该系统将散射成像与电化学测量相结合,使用光纤探针进行散射激发和3D rGO-Ti3C2-MWCNTs复合电极同时监测H2O2释放。这些模式的数据与SVM算法相结合,显著提高了分类性能,并具有HMy2的AUC。CIR细胞由0.79增加到0.97。双模方法达到90%的精度,优于单独的散射成像。这种方法增强了淋巴瘤亚型的分化,显示了个性化癌症治疗的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信