{"title":"Functional Nanomaterials Based Electrochemical and Chemiresistive Sensors for Hydrogen Detection: A Review.","authors":"Pushpesh Ranjan, Pankaj Raizada, Pardeep Singh, Anjana Devi, Biswajit Saha, Archana Singh","doi":"10.1002/asia.202500712","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen is a lightweight, small molecule that is highly flammable and causes an explosion when exposed to air by >4%. It is a colorless and odorless gas; hence, its physical examination is challenging. Therefore, a reliable detection tool is highly demanded to avoid the risk associated with their explosion. Nonetheless, hydrogen sensing is a difficult task that needs a sensitive sensor. Metal nanoparticles (MNPs) and two-dimensional (2D) nanomaterials-based sensors have gained remarkable attention for hydrogen detection. They offer excellent properties such as high active surface area, active sites, porosity, and long-term stability, which make them promising materials for sensor applications. Moreover, a sheet-like structure and flat surface favors a fast adsorption and desorption process. Therefore, the sensing performance of the sensor notably improved. This review deals with the MNPs and 2D nanomaterials such as metal oxides and sulfides, graphene, MXene, metal-organic framework, and polymeric hybrid nanocomposite-based electrochemical and chemiresistive sensors for hydrogen detection. Furthermore, the insight into the mechanistic approaches for hydrogen sensing has been discussed. Lastly, the challenges associated with hydrogen detection, their future advancements, and their commercial perspective have been addressed.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00712"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500712","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is a lightweight, small molecule that is highly flammable and causes an explosion when exposed to air by >4%. It is a colorless and odorless gas; hence, its physical examination is challenging. Therefore, a reliable detection tool is highly demanded to avoid the risk associated with their explosion. Nonetheless, hydrogen sensing is a difficult task that needs a sensitive sensor. Metal nanoparticles (MNPs) and two-dimensional (2D) nanomaterials-based sensors have gained remarkable attention for hydrogen detection. They offer excellent properties such as high active surface area, active sites, porosity, and long-term stability, which make them promising materials for sensor applications. Moreover, a sheet-like structure and flat surface favors a fast adsorption and desorption process. Therefore, the sensing performance of the sensor notably improved. This review deals with the MNPs and 2D nanomaterials such as metal oxides and sulfides, graphene, MXene, metal-organic framework, and polymeric hybrid nanocomposite-based electrochemical and chemiresistive sensors for hydrogen detection. Furthermore, the insight into the mechanistic approaches for hydrogen sensing has been discussed. Lastly, the challenges associated with hydrogen detection, their future advancements, and their commercial perspective have been addressed.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).