Polyamine-Activated Carbonyl Stress Nanoplatform Synergistically Reverses Biofilm-Driven Immunosuppressive Microenvironment

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-13 DOI:10.1021/acsnano.5c08038
Shicheng Huo, Liang Chang, Yifei Liu, Zhenjiang Xu, Mintao Xue, Changgui Shi*, Guohua Xu* and Kun Wang*, 
{"title":"Polyamine-Activated Carbonyl Stress Nanoplatform Synergistically Reverses Biofilm-Driven Immunosuppressive Microenvironment","authors":"Shicheng Huo,&nbsp;Liang Chang,&nbsp;Yifei Liu,&nbsp;Zhenjiang Xu,&nbsp;Mintao Xue,&nbsp;Changgui Shi*,&nbsp;Guohua Xu* and Kun Wang*,&nbsp;","doi":"10.1021/acsnano.5c08038","DOIUrl":null,"url":null,"abstract":"<p >Polyamine metabolic dysregulation induced by implant-associated infections (IAIs) is a pivotal contributor to the formation of an immunosuppressive microenvironment. Excessive polyamines facilitate pathogen persistence by suppressing bacterial membrane lipid peroxidation (LPO) and enhancing DNA repair mechanisms. Simultaneously, polyamines promote biofilm formation via quorum sensing (QS) modulation and inhibit host immunity to facilitate immune escape. Herein, we developed a polyamine-responsive carbonyl stress nanoplatform MIL-100@PAO@PVP (MPP), which synergistically integrates metabolic intervention and chemodynamic therapy (CDT), addressing the limitations inherent to conventional oxidative damage-based therapies. Specifically, plasma amine oxidase (PAO) within MPP catalyzes polyamine degradation at infection sites, generating highly toxic acrolein and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The produced H<sub>2</sub>O<sub>2</sub> markedly enhances MIL-100-mediated CDT, triggering a burst of hydroxyl radicals (<sup>•</sup>OH) that induces severe bacterial membrane LPO and DNA damage. Importantly, the generated acrolein further amplifies bacterial DNA damage via the induction of carbonyl stress. Additionally, bacterial debris resulting from MPP-induced cell death acts as endogenous antigens, effectively activating the antigen-presenting functions of macrophages and dendritic cells (DCs), thus reshaping the local immune response and reversing immunosuppression. Experimental results demonstrated robust antibiofilm efficacy and immunostimulatory effects of MPP in both <i>in vitro</i> and <i>in vivo</i> models, highlighting a promising therapeutic strategy for treating IAIs.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 33","pages":"30254–30274"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08038","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyamine metabolic dysregulation induced by implant-associated infections (IAIs) is a pivotal contributor to the formation of an immunosuppressive microenvironment. Excessive polyamines facilitate pathogen persistence by suppressing bacterial membrane lipid peroxidation (LPO) and enhancing DNA repair mechanisms. Simultaneously, polyamines promote biofilm formation via quorum sensing (QS) modulation and inhibit host immunity to facilitate immune escape. Herein, we developed a polyamine-responsive carbonyl stress nanoplatform MIL-100@PAO@PVP (MPP), which synergistically integrates metabolic intervention and chemodynamic therapy (CDT), addressing the limitations inherent to conventional oxidative damage-based therapies. Specifically, plasma amine oxidase (PAO) within MPP catalyzes polyamine degradation at infection sites, generating highly toxic acrolein and hydrogen peroxide (H2O2). The produced H2O2 markedly enhances MIL-100-mediated CDT, triggering a burst of hydroxyl radicals (OH) that induces severe bacterial membrane LPO and DNA damage. Importantly, the generated acrolein further amplifies bacterial DNA damage via the induction of carbonyl stress. Additionally, bacterial debris resulting from MPP-induced cell death acts as endogenous antigens, effectively activating the antigen-presenting functions of macrophages and dendritic cells (DCs), thus reshaping the local immune response and reversing immunosuppression. Experimental results demonstrated robust antibiofilm efficacy and immunostimulatory effects of MPP in both in vitro and in vivo models, highlighting a promising therapeutic strategy for treating IAIs.

Abstract Image

多胺活化羰基胁迫纳米平台协同逆转生物膜驱动的免疫抑制微环境。
由植入物相关感染(IAIs)引起的多胺代谢失调是形成免疫抑制微环境的关键因素。过量的多胺通过抑制细菌膜脂过氧化(LPO)和增强DNA修复机制来促进病原体的持久性。同时,多胺通过群体感应(quorum sensing, QS)调节促进生物膜的形成,抑制宿主免疫,促进免疫逃逸。在此,我们开发了一种多胺响应羰基应激纳米平台MIL-100@PAO@PVP (MPP),它协同整合了代谢干预和化学动力学治疗(CDT),解决了传统氧化损伤治疗固有的局限性。具体来说,MPP中的血浆胺氧化酶(PAO)在感染部位催化多胺降解,产生剧毒的丙烯醛和过氧化氢(H2O2)。产生的H2O2显著增强mil -100介导的CDT,引发羟基自由基(•OH)爆发,诱导严重的细菌膜LPO和DNA损伤。重要的是,生成的丙烯醛通过诱导羰基应激进一步放大细菌DNA损伤。此外,由mpp诱导的细胞死亡产生的细菌碎片作为内源性抗原,有效激活巨噬细胞和树突状细胞(dc)的抗原呈递功能,从而重塑局部免疫反应并逆转免疫抑制。实验结果表明,在体外和体内模型中,MPP具有强大的抗生物膜功效和免疫刺激作用,突出了治疗IAIs的有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信