B. Carboni, S. K. Guruva, S. Gumina, V. Candela, J. Tirilló, C. Sergi, T. Valente, W. Lacarbonara
{"title":"Exploring Humerus Bone’s Fracture Patterns and Fixation Systems Via Laser Vibrometry","authors":"B. Carboni, S. K. Guruva, S. Gumina, V. Candela, J. Tirilló, C. Sergi, T. Valente, W. Lacarbonara","doi":"10.1007/s11340-025-01198-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The mechanical performance assessment of orthopedic fixation systems is computationally and experimentally challenging due to the complex geometrical and mechanical features of bones. Non-contact experimental techniques, widely adopted in several engineering fields, is shown to overcome these issues.</p><h3>Objective</h3><p>This work discusses a comparative experimental investigation into specimens mimicking healthy humerus bones and fractured bones subject to an innovative surgery procedure and to a classical technique referred to as the gold standard surgery. The new surgery consists in the installation of an external fixation mechanism that constrains, according to different spatial patterns, a certain number of titanium slender bars inserted and clamped into the fractured bones.</p><h3>Methods</h3><p>The mechanical properties of artificial bones are characterized through compressive tests, while the morphology of the fracture surface is analyzed using a scanning electron microscope. A three-dimensional laser vibrometer is used to measure the resonance frequencies, mode shapes, damping ratios, and mechanical waves propagating from the actuators across the surface of the bones.</p><h3>Results</h3><p>The results provide insights into which configuration of the fixator performs better for a fast recovery. Based on the observed dynamic behaviors, the optimal configuration of the fixator offers performance that is comparable to, or potentially better than, the gold standard surgical procedure.</p><h3>Conclusions</h3><p>The novelty and feasibility of the adopted experimental approach paves the way towards the adoption of advanced non-contact techniques for the mechanical characterization of complex, non-homegenous and anisotropic materials and structures in biomedical applications enabling also data-driven models of the systems.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 7","pages":"1117 - 1132"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-025-01198-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-025-01198-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The mechanical performance assessment of orthopedic fixation systems is computationally and experimentally challenging due to the complex geometrical and mechanical features of bones. Non-contact experimental techniques, widely adopted in several engineering fields, is shown to overcome these issues.
Objective
This work discusses a comparative experimental investigation into specimens mimicking healthy humerus bones and fractured bones subject to an innovative surgery procedure and to a classical technique referred to as the gold standard surgery. The new surgery consists in the installation of an external fixation mechanism that constrains, according to different spatial patterns, a certain number of titanium slender bars inserted and clamped into the fractured bones.
Methods
The mechanical properties of artificial bones are characterized through compressive tests, while the morphology of the fracture surface is analyzed using a scanning electron microscope. A three-dimensional laser vibrometer is used to measure the resonance frequencies, mode shapes, damping ratios, and mechanical waves propagating from the actuators across the surface of the bones.
Results
The results provide insights into which configuration of the fixator performs better for a fast recovery. Based on the observed dynamic behaviors, the optimal configuration of the fixator offers performance that is comparable to, or potentially better than, the gold standard surgical procedure.
Conclusions
The novelty and feasibility of the adopted experimental approach paves the way towards the adoption of advanced non-contact techniques for the mechanical characterization of complex, non-homegenous and anisotropic materials and structures in biomedical applications enabling also data-driven models of the systems.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.