A sine transform-based preconditioner for the fourth-order scheme arising from multi-dimensional nonlocal Poisson equations

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Wei Qu , Yuan-Yuan Huang , Lot-Kei Chou , Siu-Long Lei
{"title":"A sine transform-based preconditioner for the fourth-order scheme arising from multi-dimensional nonlocal Poisson equations","authors":"Wei Qu ,&nbsp;Yuan-Yuan Huang ,&nbsp;Lot-Kei Chou ,&nbsp;Siu-Long Lei","doi":"10.1016/j.aml.2025.109717","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a simple and easy-to-implement fourth-order fractional central difference (4FCD) method is used to discretize the multi-dimensional nonlocal Poisson equation involving the integral fractional Laplacian (IFL), which gives a multilevel symmetric and positive definite Toeplitz linear system. To efficiently solve the system, we propose a sine transform-based preconditioner and prove that the preconditioned conjugate gradient (PCG) method can achieve a convergence rate independent of mesh-size. Finally, numerical results are presented to demonstrate the effectiveness of the proposed preconditioner compared with state-of-the-art methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109717"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a simple and easy-to-implement fourth-order fractional central difference (4FCD) method is used to discretize the multi-dimensional nonlocal Poisson equation involving the integral fractional Laplacian (IFL), which gives a multilevel symmetric and positive definite Toeplitz linear system. To efficiently solve the system, we propose a sine transform-based preconditioner and prove that the preconditioned conjugate gradient (PCG) method can achieve a convergence rate independent of mesh-size. Finally, numerical results are presented to demonstrate the effectiveness of the proposed preconditioner compared with state-of-the-art methods.
多维非局部泊松方程四阶格式的正弦变换预条件
本文利用一种简单易行的四阶分数阶中心差分(4FCD)方法,对包含积分分数阶拉普拉斯算子的多维非局部泊松方程进行离散,得到了一个多层对称正定Toeplitz线性系统。为了有效地求解该系统,我们提出了一种基于正弦变换的预条件,并证明了预条件共轭梯度(PCG)方法可以实现与网格大小无关的收敛速度。最后,给出了数值结果,与现有方法进行了比较,验证了所提预调节器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信