Moonil Jung , Jeeeun Yang , Dong-Jin Yun , Sung Heo , Sangwook Kim , Byoungdeog Choi
{"title":"Threshold shift mechanism in fluorine-doped indium-gallium-zinc-oxide thin film transistors via defect analysis","authors":"Moonil Jung , Jeeeun Yang , Dong-Jin Yun , Sung Heo , Sangwook Kim , Byoungdeog Choi","doi":"10.1016/j.cap.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we systematically investigate the threshold voltage (V<sub>th</sub>) shift mechanism in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors subjected to varying fluorine (F) implantation doses. Fluorine was implanted into a-IGZO at a dose of 1 × 10<sup>20</sup> cm<sup>−3</sup> with an implantation energy of 30 keV, resulting in a negative V<sub>th</sub> shift compared to undoped samples. In contrast, higher doping concentrations (5 × 10<sup>20</sup> and 1 × 10<sup>21</sup> cm<sup>−3</sup>) induced positive V<sub>th</sub> shifts.</div><div>To elucidate this mechanism, we conducted Current Transient Spectroscopy (CTS), X-ray Photoelectron Spectroscopy (XPS), and Reflection Electron Energy Loss Spectroscopy (REELS). The results indicate that moderate F doping shifts the Fermi level closer to the conduction band, causing a negative V<sub>th</sub> shift. However, at higher doping levels, shallow defect states (D1) emerge, facilitating the recombination of conduction band electrons into these states. This process reduces the on-current (I<sub>on</sub>) and leads to a positive V<sub>th</sub> shift.</div><div>Fluorine doping enhances device stability against negative bias temperature instability (NBTI), while positive bias temperature instability (PBTI) degrades increasingly with higher doping. While our experiments did not encompass the full range of doping concentrations required for simultaneous optimization of both, our results suggest that lower fluorine doses may offer a balanced approach. Through direct defect characterization, this study clarifies the critical role of such defects in the threshold voltage shift mechanism of oxide thin-film transistors, providing valuable guidance for reliability improvements.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"79 ","pages":"Pages 82-87"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001609","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we systematically investigate the threshold voltage (Vth) shift mechanism in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors subjected to varying fluorine (F) implantation doses. Fluorine was implanted into a-IGZO at a dose of 1 × 1020 cm−3 with an implantation energy of 30 keV, resulting in a negative Vth shift compared to undoped samples. In contrast, higher doping concentrations (5 × 1020 and 1 × 1021 cm−3) induced positive Vth shifts.
To elucidate this mechanism, we conducted Current Transient Spectroscopy (CTS), X-ray Photoelectron Spectroscopy (XPS), and Reflection Electron Energy Loss Spectroscopy (REELS). The results indicate that moderate F doping shifts the Fermi level closer to the conduction band, causing a negative Vth shift. However, at higher doping levels, shallow defect states (D1) emerge, facilitating the recombination of conduction band electrons into these states. This process reduces the on-current (Ion) and leads to a positive Vth shift.
Fluorine doping enhances device stability against negative bias temperature instability (NBTI), while positive bias temperature instability (PBTI) degrades increasingly with higher doping. While our experiments did not encompass the full range of doping concentrations required for simultaneous optimization of both, our results suggest that lower fluorine doses may offer a balanced approach. Through direct defect characterization, this study clarifies the critical role of such defects in the threshold voltage shift mechanism of oxide thin-film transistors, providing valuable guidance for reliability improvements.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.