The effect on soot and its gas precursors of doping ethylene with 2,2,4,6,6-pentamethyl-heptane in the nitrogen-fuel stream of a laminar non-premixed Planar Mixing Layer Flame (PMLF)
Christian P. Bjork , Mahmoud K. Ashour , Evangelos K. Stefanidis , Chiara Saggese , Scott W. Wagnon , Francesco Carbone
{"title":"The effect on soot and its gas precursors of doping ethylene with 2,2,4,6,6-pentamethyl-heptane in the nitrogen-fuel stream of a laminar non-premixed Planar Mixing Layer Flame (PMLF)","authors":"Christian P. Bjork , Mahmoud K. Ashour , Evangelos K. Stefanidis , Chiara Saggese , Scott W. Wagnon , Francesco Carbone","doi":"10.1016/j.proci.2025.105787","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic Aviation Turbine Fuels (SATFs) are promising for reducing soot emissions from the aviation sector and diversifying Jet Fuel (JF) sources. Accurately predicting the combustion and emissions behavior of SATFs (and other JFs) necessitates robust experimental databases to elucidate the chemistry of long-chain iso-paraffins, which can compose up to two-thirds of SATF blends and whose behavior is considered to be well-represented by that of iso-dodecane isomers. This study characterizes two laminar non-premixed Planar Mixing Layer Flames (PMLFs) with mild soot loads fueled by nitrogen-diluted ethylene, pure and doped with 2,2,4,6,6-pentamethyl-heptane, respectively. The two PMLFs have the same stoichiometric mixture fraction and total hydrocarbon mole fraction in the fuel stream (<em>X<sub>F,F</sub></em>=<em>X<sub>C2H4,F</sub></em>+<em>X<sub>C12H26,F</sub></em> = 0.260), resulting in nearly the same maximum temperature (<em>T<sub>max</sub></em>≈1800 K) and simple identification of the effects of doping. Importantly, any horizontal PMLF cross-section has a self-similar structure that can be modeled as an equivalent One-Dimensional Counterflow Flame (1D-CF) with vanishingly small strain rate (<em>a</em>). The cross-section at a Height Above the Burner (HAB) of 50 mm is characterized in terms of C<sub>0</sub>-C<sub>18</sub> gas species using capillary sampling followed by GC-MS analyses. Laser-Induced Emission Spectroscopy (LIES) quantifies the soot volume fraction (<em>f<sub>v</sub></em>) profiles at HAB=25 and 50 mm where Elastic Laser Light Scattering (E-LLS) is performed to determine the <em>a</em> of the equivalent 1D-CFs and the profile of the E-LLS equivalent diameter (<em>d<sub>6,3</sub></em>) of soot. The substitution of 1500 ppm of ethylene with 2,2,4,6,6-pentamethyl-heptane causes an increase of ≈1.5 in the concentrations of several polycyclic aromatic hydrocarbons and <em>f<sub>v</sub></em>. Concurrently, the measured <em>d<sub>6,</sub></em><sub>3</sub> doubles in the oxidizer stream, yet remains the same in the fuel stream, at HAB=50 mm. Instead, at HAB= 25 mm, the iso-dodecane doping does not affect the <em>d<sub>6,</sub></em><sub>3</sub> profile in either stream. The experimental results partially validate the chemical reactions and soot formation kinetic model developed at Lawrence Livermore National Laboratory and provide directions to further improve its predictions.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105787"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154074892500001X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic Aviation Turbine Fuels (SATFs) are promising for reducing soot emissions from the aviation sector and diversifying Jet Fuel (JF) sources. Accurately predicting the combustion and emissions behavior of SATFs (and other JFs) necessitates robust experimental databases to elucidate the chemistry of long-chain iso-paraffins, which can compose up to two-thirds of SATF blends and whose behavior is considered to be well-represented by that of iso-dodecane isomers. This study characterizes two laminar non-premixed Planar Mixing Layer Flames (PMLFs) with mild soot loads fueled by nitrogen-diluted ethylene, pure and doped with 2,2,4,6,6-pentamethyl-heptane, respectively. The two PMLFs have the same stoichiometric mixture fraction and total hydrocarbon mole fraction in the fuel stream (XF,F=XC2H4,F+XC12H26,F = 0.260), resulting in nearly the same maximum temperature (Tmax≈1800 K) and simple identification of the effects of doping. Importantly, any horizontal PMLF cross-section has a self-similar structure that can be modeled as an equivalent One-Dimensional Counterflow Flame (1D-CF) with vanishingly small strain rate (a). The cross-section at a Height Above the Burner (HAB) of 50 mm is characterized in terms of C0-C18 gas species using capillary sampling followed by GC-MS analyses. Laser-Induced Emission Spectroscopy (LIES) quantifies the soot volume fraction (fv) profiles at HAB=25 and 50 mm where Elastic Laser Light Scattering (E-LLS) is performed to determine the a of the equivalent 1D-CFs and the profile of the E-LLS equivalent diameter (d6,3) of soot. The substitution of 1500 ppm of ethylene with 2,2,4,6,6-pentamethyl-heptane causes an increase of ≈1.5 in the concentrations of several polycyclic aromatic hydrocarbons and fv. Concurrently, the measured d6,3 doubles in the oxidizer stream, yet remains the same in the fuel stream, at HAB=50 mm. Instead, at HAB= 25 mm, the iso-dodecane doping does not affect the d6,3 profile in either stream. The experimental results partially validate the chemical reactions and soot formation kinetic model developed at Lawrence Livermore National Laboratory and provide directions to further improve its predictions.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.