Generalized paths and cycles in semicomplete multipartite digraphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jørgen Bang-Jensen , Yun Wang , Anders Yeo
{"title":"Generalized paths and cycles in semicomplete multipartite digraphs","authors":"Jørgen Bang-Jensen ,&nbsp;Yun Wang ,&nbsp;Anders Yeo","doi":"10.1016/j.dam.2025.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>A digraph is <strong>semicomplete</strong> if it has no pair of non-adjacent vertices. It is <strong>complete</strong> if every pair of distinct vertices induces a 2-cycle. A digraph is <strong>semicomplete multipartite</strong> if it can be obtained from a semicomplete digraph <span><math><mi>D</mi></math></span> by choosing a collection of vertex-disjoint subsets <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and then deleting all arcs both of whose end-vertices lie inside some <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We can also think of a semicomplete digraph as being obtained from a semicomplete multipartite digraph on the same vertex set and partite sets <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> by adding the arcs of a semicomplete digraph <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each partite set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. It is well known that both the hamiltonian path and the hamiltonian cycle problem can be solved in polynomial time for semicomplete multipartite digraphs. In this paper we study the complexity of finding a hamiltonian path or cycle in a semicomplete digraph <span><math><mi>S</mi></math></span> which is obtained as above from a semicomplete multipartite digraph <span><math><mi>D</mi></math></span> and semicomplete digraphs <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>c</mi><mo>]</mo></mrow></mrow></math></span> such that the path or cycle uses as few arcs of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>…</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> as possible. We obtain a number of results for the case when each <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a complete digraph. Already this case is highly nontrivial in the cycle case and the complexity is still open. We show how to find a Hamiltonian path which uses as few arcs from the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s as possible in polynomial time and obtain a number of results, both structural and algorithmic on hamiltonian cycles that use the minimum or close to the minimum number of arcs from the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s. Our results imply the polynomial solvability of some special cases of the NP-complete <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></math></span>-TSP problem. Finally we show that two natural questions about properties of quasi-hamiltonian cycles, that is, cycles meeting all partite sets in semicomplete multipartite digraphs are NP-complete.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 459-479"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004627","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A digraph is semicomplete if it has no pair of non-adjacent vertices. It is complete if every pair of distinct vertices induces a 2-cycle. A digraph is semicomplete multipartite if it can be obtained from a semicomplete digraph D by choosing a collection of vertex-disjoint subsets X1,,Xc of V(D) and then deleting all arcs both of whose end-vertices lie inside some Xi. We can also think of a semicomplete digraph as being obtained from a semicomplete multipartite digraph on the same vertex set and partite sets V1,,Vc by adding the arcs of a semicomplete digraph Di on Vi for each partite set Vi. It is well known that both the hamiltonian path and the hamiltonian cycle problem can be solved in polynomial time for semicomplete multipartite digraphs. In this paper we study the complexity of finding a hamiltonian path or cycle in a semicomplete digraph S which is obtained as above from a semicomplete multipartite digraph D and semicomplete digraphs Di=(Vi,Ai), i[c] such that the path or cycle uses as few arcs of A1Ac as possible. We obtain a number of results for the case when each Di is a complete digraph. Already this case is highly nontrivial in the cycle case and the complexity is still open. We show how to find a Hamiltonian path which uses as few arcs from the Di’s as possible in polynomial time and obtain a number of results, both structural and algorithmic on hamiltonian cycles that use the minimum or close to the minimum number of arcs from the Di’s. Our results imply the polynomial solvability of some special cases of the NP-complete {0,1}-TSP problem. Finally we show that two natural questions about properties of quasi-hamiltonian cycles, that is, cycles meeting all partite sets in semicomplete multipartite digraphs are NP-complete.
半完全多部有向图中的广义路径和环
有向图是半完备的,如果它没有一对非相邻的顶点。如果每一对不同的顶点都诱导出一个2环,则它是完备的。如果可以从半完全有向图D中选择V(D)的顶点不相交子集X1,…,Xc的集合,然后删除所有端点都位于某个Xi内的弧,则该有向图就是半完全多部图。我们也可以把半完全有向图看作是由相同顶点集和部集V1,…,Vc上的半完全多部有向图对每个部集Vi的半完全有向图Di在Vi上的弧相加而得到的。众所周知,对于半完全多部有向图,哈密顿路径和哈密顿循环问题都可以在多项式时间内求解。本文研究了在由半完全多部有向图D和半完全有向图Di=(Vi,Ai), i∈[c]得到的半完全有向图S中寻找哈密顿路径或环的复杂性,使得该路径或环使用尽可能少的A1∪…Ac的弧。当每个Di都是完全有向图时,我们得到了一些结果。这种情况在循环情况下是非常重要的,复杂性仍然是开放的。我们展示了如何在多项式时间内找到一个使用尽可能少的Di弧线的哈密顿路径,并在哈密顿循环上获得了一些结果,包括结构和算法上的结果,这些结果使用了最小或接近最小数量的Di弧线。我们的结果暗示了np完全{0,1}-TSP问题的一些特殊情况的多项式可解性。最后,我们证明了关于半完全多部有向图中满足所有部集的环的性质的两个自然问题是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信