Yinan Yu , Alex Gonzalez-Caceres , Samuel Scheidegger , Sanjay Somanath , Alexander Hollberg
{"title":"Deep learning-based Scalable Image-to-3D Facade Parser for generating thermal 3D building models","authors":"Yinan Yu , Alex Gonzalez-Caceres , Samuel Scheidegger , Sanjay Somanath , Alexander Hollberg","doi":"10.1016/j.autcon.2025.106449","DOIUrl":null,"url":null,"abstract":"<div><div>Renovating existing buildings is essential for climate impact. Early-phase renovation planning requires simulations based on thermal 3D models at Level of Detail (LoD) 3, which include features like windows. However, scalable and accurate identification of such features remains a challenge. This paper presents the Scalable Image-to-3D Facade Parser (SI3FP), a pipeline that generates LoD3 thermal models by extracting geometries from images using both computer vision and deep learning. Unlike existing methods relying on segmentation and projection, SI3FP directly models geometric primitives in the orthographic image plane, providing a unified interface while reducing perspective distortions. SI3FP supports both sparse (e.g., Google Street View) and dense (e.g., hand-held camera) data sources. Tested on typical Swedish residential buildings, SI3FP achieved approximately 5% error in window-to-wall ratio estimates, demonstrating sufficient accuracy for early-stage renovation analysis. The pipeline facilitates large-scale energy renovation planning and has broader applications in urban development and planning.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"179 ","pages":"Article 106449"},"PeriodicalIF":11.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525004893","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renovating existing buildings is essential for climate impact. Early-phase renovation planning requires simulations based on thermal 3D models at Level of Detail (LoD) 3, which include features like windows. However, scalable and accurate identification of such features remains a challenge. This paper presents the Scalable Image-to-3D Facade Parser (SI3FP), a pipeline that generates LoD3 thermal models by extracting geometries from images using both computer vision and deep learning. Unlike existing methods relying on segmentation and projection, SI3FP directly models geometric primitives in the orthographic image plane, providing a unified interface while reducing perspective distortions. SI3FP supports both sparse (e.g., Google Street View) and dense (e.g., hand-held camera) data sources. Tested on typical Swedish residential buildings, SI3FP achieved approximately 5% error in window-to-wall ratio estimates, demonstrating sufficient accuracy for early-stage renovation analysis. The pipeline facilitates large-scale energy renovation planning and has broader applications in urban development and planning.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.