{"title":"Development of a phoswich detector for low-energy gamma rays emitted from alpha emitters","authors":"Yuki Morishita , Tsutomu Yamada , Takamasa Nakasone , Marina Kanno , Miyuki Sasaki , Yukihisa Sanada , Tatsuo Torii","doi":"10.1016/j.radmeas.2025.107502","DOIUrl":null,"url":null,"abstract":"<div><div>The decommissioning of the Fukushima Daiichi Nuclear Power Station requires thorough inspection of piping for contamination, including alpha nuclides. Since external alpha particle measurements are impractical, detection relies on gamma-rays emitted by the alpha nuclides. Therefore, a phoswich detector for detecting low-energy gamma-rays was developed and experimentally validated. The detector was designed with consideration of energy deposition characteristics and consists of YAP:Ce or High Energy Resolution Gd<sub>3</sub>(Ga,Al)<sub>5</sub>O<sub>12</sub>(Ce) (HR-GAGG) scintillators in combination with BGO scintillators, employing a photomultiplier tube for signal amplification. Validation procedures included Monte Carlo simulations and measurements using actual radiation sources. Both measurement and simulation results demonstrate a correlation in scintillator energy depositions across different gamma-ray energies. Pulse Shape Discrimination (PSD) plots effectively differentiate between low-energy and high-energy gamma-rays, thereby confirming the predictions from simulations. The combination of YAP:Ce and BGO with a digitizer enables detection of low energy gamma-rays and high energy gamma-rays. With the 0.5 mm thick YAP:Ce scintillator, the energy resolution was 29.1 % FWHM at 59.5 keV. Figure of Merit (FOM) was evaluated as 1.97. The detection efficiency for 60 keV gamma-rays was about 14 %. These results suggest promising potential for developing a sensitive low-energy gamma-ray detector utilizing various scintillator combinations. The phoswich detector shows promise for effectively detecting low-energy gamma-rays emitted by alpha nuclides in piping.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"188 ","pages":"Article 107502"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448725001313","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The decommissioning of the Fukushima Daiichi Nuclear Power Station requires thorough inspection of piping for contamination, including alpha nuclides. Since external alpha particle measurements are impractical, detection relies on gamma-rays emitted by the alpha nuclides. Therefore, a phoswich detector for detecting low-energy gamma-rays was developed and experimentally validated. The detector was designed with consideration of energy deposition characteristics and consists of YAP:Ce or High Energy Resolution Gd3(Ga,Al)5O12(Ce) (HR-GAGG) scintillators in combination with BGO scintillators, employing a photomultiplier tube for signal amplification. Validation procedures included Monte Carlo simulations and measurements using actual radiation sources. Both measurement and simulation results demonstrate a correlation in scintillator energy depositions across different gamma-ray energies. Pulse Shape Discrimination (PSD) plots effectively differentiate between low-energy and high-energy gamma-rays, thereby confirming the predictions from simulations. The combination of YAP:Ce and BGO with a digitizer enables detection of low energy gamma-rays and high energy gamma-rays. With the 0.5 mm thick YAP:Ce scintillator, the energy resolution was 29.1 % FWHM at 59.5 keV. Figure of Merit (FOM) was evaluated as 1.97. The detection efficiency for 60 keV gamma-rays was about 14 %. These results suggest promising potential for developing a sensitive low-energy gamma-ray detector utilizing various scintillator combinations. The phoswich detector shows promise for effectively detecting low-energy gamma-rays emitted by alpha nuclides in piping.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.