{"title":"Erythrocyte-derived nanosystems for biosensing: A green approach for analysis","authors":"Shivam Rajput , Rishabha Malviya , Sathvik Belagodu Sridhar , Tarun Wadhwa , Javedh Shareef","doi":"10.1016/j.jpbao.2025.100088","DOIUrl":null,"url":null,"abstract":"<div><div>Biosensors utilising nanotechnology are advancing swiftly and are extensively employed across various domains, including biomedicine, environmental monitoring, and analytical chemistry, where they have attained significant roles. Novel nanomaterials are being extensively designed and produced for prospective biosensing and theranostic uses. This review provides a comprehensive analysis of relevant literature from the past ten years, focusing on the use of nanoparticles in this context. The amalgamation of diagnostic biosensors with drug delivery systems for the administration of therapeutic agents presents significant potential in next-generation theranostic platforms. The controllable, precise, and safe delivery of diagnostic biosensing devices and therapeutic drugs to target tissues, organs, or cells is a crucial factor in the development of improved nanobiosensor-based theranostic systems. Recently, the utilisation of natural biological carriers in drug delivery systems has become one of the most extensively studied research issues. Erythrocytes, or red blood cells, may serve as carriers for a diverse array of pharmaceuticals, encompassing anticancer, antibacterial, antiviral, and anti-inflammatory agents, as well as numerous proteins, peptides, enzymes, and other macromolecules. Red blood cell (RBC)-based nanocarrier systems, known as erythrocyte nanovesicles, exhibit remarkable characteristics including prolonged circulation times, evasion of the immune system, gradual drug release, protection of drugs and biosensors from endogenous factors, targeted delivery, and applications in both therapeutic and diagnostic domains within biomedical sciences. Erythrocytes, the most prevalent circulating blood cells, have been thoroughly studied for biomimetic coatings on artificial nanocarriers owing to their enhanced biocompatibility, biodegradability, non-immunogenicity, and prolonged circulation in the bloodstream. Consequently, erythrocyte nanovehicles (ENV) has many applications, including drug transport, imaging, phototherapy, immunomodulation, sensing, and detection, which indicate substantial promise for therapeutic and diagnostic uses in various disorders. This paper covers recent advancements in the biomedical uses of ENV in cancer, infections, cardiovascular issues, and several other associated ailments particularly for biosensing. This paper also presents the RBC-mediated transport of nanobiosensors for bio-imaging at the single-cell level, enhanced medical diagnostics, and the analytical detection of biomolecules and cellular activity.</div></div>","PeriodicalId":100822,"journal":{"name":"Journal of Pharmaceutical and Biomedical Analysis Open","volume":"6 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biomedical Analysis Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949771X25000398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biosensors utilising nanotechnology are advancing swiftly and are extensively employed across various domains, including biomedicine, environmental monitoring, and analytical chemistry, where they have attained significant roles. Novel nanomaterials are being extensively designed and produced for prospective biosensing and theranostic uses. This review provides a comprehensive analysis of relevant literature from the past ten years, focusing on the use of nanoparticles in this context. The amalgamation of diagnostic biosensors with drug delivery systems for the administration of therapeutic agents presents significant potential in next-generation theranostic platforms. The controllable, precise, and safe delivery of diagnostic biosensing devices and therapeutic drugs to target tissues, organs, or cells is a crucial factor in the development of improved nanobiosensor-based theranostic systems. Recently, the utilisation of natural biological carriers in drug delivery systems has become one of the most extensively studied research issues. Erythrocytes, or red blood cells, may serve as carriers for a diverse array of pharmaceuticals, encompassing anticancer, antibacterial, antiviral, and anti-inflammatory agents, as well as numerous proteins, peptides, enzymes, and other macromolecules. Red blood cell (RBC)-based nanocarrier systems, known as erythrocyte nanovesicles, exhibit remarkable characteristics including prolonged circulation times, evasion of the immune system, gradual drug release, protection of drugs and biosensors from endogenous factors, targeted delivery, and applications in both therapeutic and diagnostic domains within biomedical sciences. Erythrocytes, the most prevalent circulating blood cells, have been thoroughly studied for biomimetic coatings on artificial nanocarriers owing to their enhanced biocompatibility, biodegradability, non-immunogenicity, and prolonged circulation in the bloodstream. Consequently, erythrocyte nanovehicles (ENV) has many applications, including drug transport, imaging, phototherapy, immunomodulation, sensing, and detection, which indicate substantial promise for therapeutic and diagnostic uses in various disorders. This paper covers recent advancements in the biomedical uses of ENV in cancer, infections, cardiovascular issues, and several other associated ailments particularly for biosensing. This paper also presents the RBC-mediated transport of nanobiosensors for bio-imaging at the single-cell level, enhanced medical diagnostics, and the analytical detection of biomolecules and cellular activity.