Ain Uddin , Michelle Lehmann , Harmandeep Singh , Vera Bocharova , Logan T. Kearney , Joshua T. Damron , Yifan Liu , Valentino R. Cooper , Rajeev Kumar , Kenneth S. Schweizer , Alexei P. Sokolov , Tomonori Saito , Catalin Gainaru
{"title":"Unraveling the pathway towards superionic transport in polymer electrolytes","authors":"Ain Uddin , Michelle Lehmann , Harmandeep Singh , Vera Bocharova , Logan T. Kearney , Joshua T. Damron , Yifan Liu , Valentino R. Cooper , Rajeev Kumar , Kenneth S. Schweizer , Alexei P. Sokolov , Tomonori Saito , Catalin Gainaru","doi":"10.1016/j.mattod.2025.06.043","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic transport in polymers is critical for Li-ion batteries, fuel cells, flow batteries<span><span><span> and many other energy storage and conversion technologies. A significant enhancement of ion conductivity in polymers may be achieved through an increase in the polarity of side chains and their self-organization into specific morphologies, which can potentially act as percolated ionic structures. However, higher polarity increases attractive interactions within a polymer matrix and slows down its segmental dynamics, which conversely hinders ionic transport. To overcome this tradeoff, we designed the functionalization of a Li salt-doped polymer matrix by tailored amounts of zwitterionic (ZI) groups. Our results suggest the emergence of a self-assembled </span>percolation conductivity regime above a specific ZI concentration, in which ion hopping decouples from segmental dynamics by up to ten orders of magnitude. Consequently, in the highly concentrated ZI regime, our polymeric materials exhibit in their glassy state energy barriers for ion hopping similar to, or even smaller than, those reported for superionic ceramics. Our study also reveals that ion dynamics in the poly(zwitterion) with all </span>monomers<span> carrying ZI groups is significantly faster than that of a monomeric ZI compound, although the latter has much faster structural relaxation. This result highlights the crucial role played by the local morphology on the ion transport of polymer electrolytes and opens a new pathway for the design of superionic polymers, significantly expanding the current limited portfolio of solid-state electrolytes for energy applications.</span></span></div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"88 ","pages":"Pages 322-327"},"PeriodicalIF":22.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125002858","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ionic transport in polymers is critical for Li-ion batteries, fuel cells, flow batteries and many other energy storage and conversion technologies. A significant enhancement of ion conductivity in polymers may be achieved through an increase in the polarity of side chains and their self-organization into specific morphologies, which can potentially act as percolated ionic structures. However, higher polarity increases attractive interactions within a polymer matrix and slows down its segmental dynamics, which conversely hinders ionic transport. To overcome this tradeoff, we designed the functionalization of a Li salt-doped polymer matrix by tailored amounts of zwitterionic (ZI) groups. Our results suggest the emergence of a self-assembled percolation conductivity regime above a specific ZI concentration, in which ion hopping decouples from segmental dynamics by up to ten orders of magnitude. Consequently, in the highly concentrated ZI regime, our polymeric materials exhibit in their glassy state energy barriers for ion hopping similar to, or even smaller than, those reported for superionic ceramics. Our study also reveals that ion dynamics in the poly(zwitterion) with all monomers carrying ZI groups is significantly faster than that of a monomeric ZI compound, although the latter has much faster structural relaxation. This result highlights the crucial role played by the local morphology on the ion transport of polymer electrolytes and opens a new pathway for the design of superionic polymers, significantly expanding the current limited portfolio of solid-state electrolytes for energy applications.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.