Closed-loop inverse design of high entropy alloys using symbolic regression-oriented optimization

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shang Zhao , Jinshan Li , Jun Wang , Turab Lookman , Ruihao Yuan
{"title":"Closed-loop inverse design of high entropy alloys using symbolic regression-oriented optimization","authors":"Shang Zhao ,&nbsp;Jinshan Li ,&nbsp;Jun Wang ,&nbsp;Turab Lookman ,&nbsp;Ruihao Yuan","doi":"10.1016/j.mattod.2025.06.033","DOIUrl":null,"url":null,"abstract":"<div><div><span>Rapidly finding new materials that are distinct to those in existing datasets continues to be a challenge for machine learning-driven approaches. Here, we propose a closed-loop framework to accelerate the inverse design of target materials, with emphasis on the use of symbolic regression-guided optimization. The refractory high entropy alloys are used as a model system to demonstrate the efficacy of the proposed approach. Symbolic regression learns a simple formula between a basic physical descriptor (enthalpy of fusion) and target property (yield strength at 1000 °C), which allows us to devise a new alloy system (V-Ti-Mo-Nb-Zr). The property optimization is enabled by combining heuristic algorithms and an uncertainty-aware utility function to recommend candidates for experiment. With only four iterations, we fabricate 21 alloys, of which 12 exhibit improved specific yield strength and two surpass 110 MPa/(g/cm</span><span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>). The gradual rise in density coupled with the quick increase in lattice distortion underpin the enhanced yield strength. This study highlights the effectiveness of symbolic regression-oriented optimization in identifying target materials from complex systems.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"88 ","pages":"Pages 263-271"},"PeriodicalIF":22.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125002743","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rapidly finding new materials that are distinct to those in existing datasets continues to be a challenge for machine learning-driven approaches. Here, we propose a closed-loop framework to accelerate the inverse design of target materials, with emphasis on the use of symbolic regression-guided optimization. The refractory high entropy alloys are used as a model system to demonstrate the efficacy of the proposed approach. Symbolic regression learns a simple formula between a basic physical descriptor (enthalpy of fusion) and target property (yield strength at 1000 °C), which allows us to devise a new alloy system (V-Ti-Mo-Nb-Zr). The property optimization is enabled by combining heuristic algorithms and an uncertainty-aware utility function to recommend candidates for experiment. With only four iterations, we fabricate 21 alloys, of which 12 exhibit improved specific yield strength and two surpass 110 MPa/(g/cm3). The gradual rise in density coupled with the quick increase in lattice distortion underpin the enhanced yield strength. This study highlights the effectiveness of symbolic regression-oriented optimization in identifying target materials from complex systems.

Abstract Image

基于符号回归优化的高熵合金闭环反设计
对于机器学习驱动的方法来说,快速找到与现有数据集不同的新材料仍然是一个挑战。在这里,我们提出了一个闭环框架来加速目标材料的逆向设计,重点是使用符号回归指导优化。以难熔高熵合金为模型系统,验证了该方法的有效性。符号回归学习了基本物理描述符(熔合焓)和目标性能(1000℃屈服强度)之间的简单公式,这使我们能够设计出新的合金体系(V-Ti-Mo-Nb-Zr)。结合启发式算法和不确定性感知效用函数来推荐实验候选物,从而实现属性优化。仅经过4次迭代,我们就制造出21种合金,其中12种合金的屈服强度有所提高,2种合金的屈服强度超过110 MPa/(g/cm3)。密度的逐渐增加加上晶格畸变的迅速增加是屈服强度增强的基础。本研究强调了符号回归优化在复杂系统中识别目标材料的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信