Enhanced Spin Pumping and Magnetization Dynamics in Ni80Fe20/MoS2 Nanoscale-Thick Stacks via Interface Modification for Spintronics Applications

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahammad Tahir, Somya Diwakar, Subhakanta Das, Mukul Gupta, Rohit Medwal* and Soumik Mukhopadhyay*, 
{"title":"Enhanced Spin Pumping and Magnetization Dynamics in Ni80Fe20/MoS2 Nanoscale-Thick Stacks via Interface Modification for Spintronics Applications","authors":"Mahammad Tahir,&nbsp;Somya Diwakar,&nbsp;Subhakanta Das,&nbsp;Mukul Gupta,&nbsp;Rohit Medwal* and Soumik Mukhopadhyay*,&nbsp;","doi":"10.1021/acsanm.5c03049","DOIUrl":null,"url":null,"abstract":"<p >Materials possessing pronounced spin–orbit coupling (SOC) are fundamental to the development of spin–orbit torque-driven magnetic memory devices, as they facilitate efficient manipulation of spin currents essential for device operation. Transition metal dichalcogenides are promising candidates for such applications because of their inherently high SOC strength. This work investigates the interfacial spin pumping effect between a monolayer of molybdenum disulfide (ML-MoS<sub>2</sub>) and Ni<sub>80</sub>Fe<sub>20</sub> (Py) thin films, using broadband ferromagnetic resonance (FMR) spectroscopy. FMR measurements reveal a notable enhancement in the effective damping factor for the ML-MoS<sub>2</sub>/Py (Pt = 0 nm) interface compared to the reference Py thin films, attributed to spin pumping across the ML-MoS<sub>2</sub>/Py interface. To quantify spin pumping efficiency, we insert a high SOC platinum (Pt) interlayer at the ML-MoS<sub>2</sub>/Py interface and systematically vary its thickness (1, 2, and 5 nm). This enables the evaluation of key spin transport parameters, including the enhancement of the effective damping parameter and the effective spin mixing conductance, which reflects the transfer of spin angular momentum from Py to the ML-MoS<sub>2</sub>, thereby allowing us to determine the effective spin current density. The results indicate that ML-MoS<sub>2</sub> in combination with Pt layers of 1, 2, and 5 nm thickness is well suited for spintronic applications with promising potential for energy-efficient memory and logic devices.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 32","pages":"16164–16173"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03049","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Materials possessing pronounced spin–orbit coupling (SOC) are fundamental to the development of spin–orbit torque-driven magnetic memory devices, as they facilitate efficient manipulation of spin currents essential for device operation. Transition metal dichalcogenides are promising candidates for such applications because of their inherently high SOC strength. This work investigates the interfacial spin pumping effect between a monolayer of molybdenum disulfide (ML-MoS2) and Ni80Fe20 (Py) thin films, using broadband ferromagnetic resonance (FMR) spectroscopy. FMR measurements reveal a notable enhancement in the effective damping factor for the ML-MoS2/Py (Pt = 0 nm) interface compared to the reference Py thin films, attributed to spin pumping across the ML-MoS2/Py interface. To quantify spin pumping efficiency, we insert a high SOC platinum (Pt) interlayer at the ML-MoS2/Py interface and systematically vary its thickness (1, 2, and 5 nm). This enables the evaluation of key spin transport parameters, including the enhancement of the effective damping parameter and the effective spin mixing conductance, which reflects the transfer of spin angular momentum from Py to the ML-MoS2, thereby allowing us to determine the effective spin current density. The results indicate that ML-MoS2 in combination with Pt layers of 1, 2, and 5 nm thickness is well suited for spintronic applications with promising potential for energy-efficient memory and logic devices.

Abstract Image

自旋电子学应用中Ni80Fe20/MoS2纳米厚度层界面修饰增强自旋泵浦和磁化动力学
具有明显自旋轨道耦合(SOC)的材料是自旋轨道扭矩驱动磁存储器件发展的基础,因为它们有助于有效地操纵器件运行所必需的自旋电流。由于其固有的高SOC强度,过渡金属二硫族化合物是这类应用的有希望的候选者。本文利用宽带铁磁共振(FMR)光谱研究了单层二硫化钼(ML-MoS2)和Ni80Fe20 (Py)薄膜之间的界面自旋泵浦效应。FMR测量显示,与参考Py薄膜相比,ML-MoS2/Py (Pt = 0 nm)界面的有效阻尼因子显着增强,这归因于ML-MoS2/Py界面上的自旋泵浦。为了量化自旋泵浦效率,我们在ML-MoS2/Py界面上插入了一个高SOC铂(Pt)夹层,并系统地改变了其厚度(1、2和5 nm)。这使得我们能够评估关键的自旋输运参数,包括有效阻尼参数和有效自旋混合电导的增强,这反映了自旋角动量从Py向ML-MoS2的转移,从而使我们能够确定有效自旋电流密度。结果表明,ML-MoS2与1、2和5 nm厚度的Pt层结合非常适合自旋电子应用,在节能存储和逻辑器件方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信