Owen Burbidge, Martyna W. Pastok, Diana Papini, Samantha L. Hodder, Grasilda Zenkevičiūtė, Kenneth Z.J. Tan, Shannon Turberville, Martin E.M. Noble, Jane A. Endicott, Laura Itzhaki
{"title":"Nanobodies restore stability to cancer-associated mutants of tumor suppressor protein p16INK4a","authors":"Owen Burbidge, Martyna W. Pastok, Diana Papini, Samantha L. Hodder, Grasilda Zenkevičiūtė, Kenneth Z.J. Tan, Shannon Turberville, Martin E.M. Noble, Jane A. Endicott, Laura Itzhaki","doi":"10.1016/j.str.2025.07.017","DOIUrl":null,"url":null,"abstract":"We describe the generation and characterization of camelid single-domain antibodies (nanobodies) raised against tumor suppressor protein p16INK4a (p16). p16 is a cell cycle regulator that inhibits cyclin-dependent kinases CDK4 and CDK6 and is inactivated in sporadic and familial cancers. The majority of p16 missense mutations cause loss of function by destabilizing the protein’s structure. We identify nanobodies that bind p16 with nanomolar affinities and restore the stability of many different cancer-associated p16 mutations located at sites throughout the protein. The crystal structure of a nanobody-p16 complex reveals that the nanobody binds to the opposite face of p16 to the CDK-binding interface permitting formation of a ternary complex. We confirm that nanobodies bind to p16 in a cellular setting and do not preclude p16 binding to CDK6 and its ability to induce cell-cycle arrest. These findings indicate that nanobodies merit testing as pharmacological chaperones for p16 reactivation in the cell.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"40 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.07.017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We describe the generation and characterization of camelid single-domain antibodies (nanobodies) raised against tumor suppressor protein p16INK4a (p16). p16 is a cell cycle regulator that inhibits cyclin-dependent kinases CDK4 and CDK6 and is inactivated in sporadic and familial cancers. The majority of p16 missense mutations cause loss of function by destabilizing the protein’s structure. We identify nanobodies that bind p16 with nanomolar affinities and restore the stability of many different cancer-associated p16 mutations located at sites throughout the protein. The crystal structure of a nanobody-p16 complex reveals that the nanobody binds to the opposite face of p16 to the CDK-binding interface permitting formation of a ternary complex. We confirm that nanobodies bind to p16 in a cellular setting and do not preclude p16 binding to CDK6 and its ability to induce cell-cycle arrest. These findings indicate that nanobodies merit testing as pharmacological chaperones for p16 reactivation in the cell.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.