Learning time-varying Gaussian quantum lossy channels

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Angela Rosy Morgillo, Stefano Mancini, Massimiliano F Sacchi and Chiara Macchiavello
{"title":"Learning time-varying Gaussian quantum lossy channels","authors":"Angela Rosy Morgillo, Stefano Mancini, Massimiliano F Sacchi and Chiara Macchiavello","doi":"10.1088/2058-9565/adf6d2","DOIUrl":null,"url":null,"abstract":"Time-varying quantum channels are essential for modeling realistic quantum systems with evolving noise properties. Here, we consider Gaussian lossy channels varying from one use to another and we employ neural networks to classify, regress, and forecast the behavior of these channels from their Choi-Jamiołkowski states. The networks achieve at least 87% of accuracy in distinguishing between non-Markovian, Markovian, memoryless, compound, and deterministic channels. In regression tasks, the model accurately reconstructs the loss parameter sequences, and in forecasting, it predicts future values, with improved performance as the memory parameter approaches 1 for Markovian channels. These results demonstrate the potential of neural networks in characterizing and predicting the dynamics of quantum channels.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"12 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf6d2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Time-varying quantum channels are essential for modeling realistic quantum systems with evolving noise properties. Here, we consider Gaussian lossy channels varying from one use to another and we employ neural networks to classify, regress, and forecast the behavior of these channels from their Choi-Jamiołkowski states. The networks achieve at least 87% of accuracy in distinguishing between non-Markovian, Markovian, memoryless, compound, and deterministic channels. In regression tasks, the model accurately reconstructs the loss parameter sequences, and in forecasting, it predicts future values, with improved performance as the memory parameter approaches 1 for Markovian channels. These results demonstrate the potential of neural networks in characterizing and predicting the dynamics of quantum channels.
学习时变高斯量子有损信道
时变量子信道对于模拟具有演化噪声特性的现实量子系统至关重要。在这里,我们考虑高斯有损通道从一种用途到另一种用途的变化,我们使用神经网络来分类,回归和预测这些通道的Choi-Jamiołkowski状态的行为。该网络在区分非马尔可夫通道、马尔可夫通道、无记忆通道、复合通道和确定性通道方面的准确率至少达到87%。在回归任务中,该模型准确地重建了损失参数序列,在预测中,它预测了未来的值,当记忆参数对马尔可夫通道趋近于1时,性能有所提高。这些结果证明了神经网络在表征和预测量子通道动力学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信