Kamyar Rashidi, Evripidis Michail, Bernardo Salcido-Santacruz, Yamuna Paudel, Vinod M. Menon, Matthew Y. Sfeir
{"title":"Efficient and tunable photochemical charge transfer via long-lived Bloch surface wave polaritons","authors":"Kamyar Rashidi, Evripidis Michail, Bernardo Salcido-Santacruz, Yamuna Paudel, Vinod M. Menon, Matthew Y. Sfeir","doi":"10.1038/s41565-025-01995-0","DOIUrl":null,"url":null,"abstract":"<p>Hybrid light–matter molecular exciton–polariton states have been proposed as a strategy to directly modify the efficiency and rate of photoinduced molecular charge transfer reactions. However, the efficacy of polariton-driven photochemistry remains an open question owing to the experimental challenges to tease out this effect. Here we demonstrate conditions under which photoinduced polaritonic charge transfer can be achieved and visualized using momentum-resolved ultrafast spectroscopy. Key conditions for charge transfer are satisfied using Bloch surface wave polaritons, which exhibit favourable dispersion characteristics that permit the selective pumping of hybrid states with long lifetimes (100–400 fs) that permit vibrationally assisted charge transfer between a donor and an acceptor molecule dispersed in a polymer matrix. Using this approach, we tune the energetic driving force for charge separation, reducing it by as much as 0.5 eV compared with the bare exciton pumping with an internal quantum efficiency of 0.77. These results corroborate the notion that tunable and efficient polariton-driven molecular charge transfer is indeed possible using carefully constructed photonic systems.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"16 1","pages":""},"PeriodicalIF":34.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01995-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid light–matter molecular exciton–polariton states have been proposed as a strategy to directly modify the efficiency and rate of photoinduced molecular charge transfer reactions. However, the efficacy of polariton-driven photochemistry remains an open question owing to the experimental challenges to tease out this effect. Here we demonstrate conditions under which photoinduced polaritonic charge transfer can be achieved and visualized using momentum-resolved ultrafast spectroscopy. Key conditions for charge transfer are satisfied using Bloch surface wave polaritons, which exhibit favourable dispersion characteristics that permit the selective pumping of hybrid states with long lifetimes (100–400 fs) that permit vibrationally assisted charge transfer between a donor and an acceptor molecule dispersed in a polymer matrix. Using this approach, we tune the energetic driving force for charge separation, reducing it by as much as 0.5 eV compared with the bare exciton pumping with an internal quantum efficiency of 0.77. These results corroborate the notion that tunable and efficient polariton-driven molecular charge transfer is indeed possible using carefully constructed photonic systems.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.