Aarti Krishnan, Melis N. Anahtar, Jacqueline A. Valeri, Wengong Jin, Nina M. Donghia, Leif Sieben, Andreas Luttens, Yu Zhang, Seyed Majed Modaresi, Andrew Hennes, Jenna Fromer, Parijat Bandyopadhyay, Jonathan C. Chen, Danyal Rehman, Ronak Desai, Paige Edwards, Ryan S. Lach, Marie-Stéphanie Aschtgen, Margaux Gaborieau, Massimiliano Gaetani, James J. Collins
{"title":"A generative deep learning approach to de novo antibiotic design","authors":"Aarti Krishnan, Melis N. Anahtar, Jacqueline A. Valeri, Wengong Jin, Nina M. Donghia, Leif Sieben, Andreas Luttens, Yu Zhang, Seyed Majed Modaresi, Andrew Hennes, Jenna Fromer, Parijat Bandyopadhyay, Jonathan C. Chen, Danyal Rehman, Ronak Desai, Paige Edwards, Ryan S. Lach, Marie-Stéphanie Aschtgen, Margaux Gaborieau, Massimiliano Gaetani, James J. Collins","doi":"10.1016/j.cell.2025.07.033","DOIUrl":null,"url":null,"abstract":"The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing <em>de novo</em> antibiotics through two approaches: a fragment-based method to comprehensively screen >10<sup>7</sup> chemical fragments <em>in silico</em> against <em>Neisseria gonorrhoeae</em> or <em>Staphylococcus aureus</em>, subsequently expanding promising fragments, and an unconstrained <em>de novo</em> compound generation, each using genetic algorithms and variational autoencoders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead compounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of action and reduced bacterial burden <em>in vivo</em> in mouse models of <em>N. gonorrhoeae</em> vaginal infection and methicillin-resistant <em>S. aureus</em> skin infection. We further validated structural analogs for both compound classes as antibacterial. Our approach enables the generative deep-learning-guided design of <em>de novo</em> antibiotics, providing a platform for mapping uncharted regions of chemical space.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"24 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.07.033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing de novo antibiotics through two approaches: a fragment-based method to comprehensively screen >107 chemical fragments in silico against Neisseria gonorrhoeae or Staphylococcus aureus, subsequently expanding promising fragments, and an unconstrained de novo compound generation, each using genetic algorithms and variational autoencoders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead compounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of action and reduced bacterial burden in vivo in mouse models of N. gonorrhoeae vaginal infection and methicillin-resistant S. aureus skin infection. We further validated structural analogs for both compound classes as antibacterial. Our approach enables the generative deep-learning-guided design of de novo antibiotics, providing a platform for mapping uncharted regions of chemical space.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.