Jinlong Y. Lu, William B. Tu, Ronghui Li, Mingxi Weng, Bhargav D. Sanketi, Baolei Yuan, Pradeep Reddy, Concepcion Rodriguez Esteban, Juan Carlos Izpisua Belmonte
{"title":"Prevalent mesenchymal drift in aging and disease is reversed by partial reprogramming","authors":"Jinlong Y. Lu, William B. Tu, Ronghui Li, Mingxi Weng, Bhargav D. Sanketi, Baolei Yuan, Pradeep Reddy, Concepcion Rodriguez Esteban, Juan Carlos Izpisua Belmonte","doi":"10.1016/j.cell.2025.07.031","DOIUrl":null,"url":null,"abstract":"The loss of cellular and tissue identity is a hallmark of aging and numerous diseases, but the underlying mechanisms are not well understood. Our analysis of gene expression data from over 40 human tissues and 20 diseases reveals a pervasive upregulation of mesenchymal genes across multiple cell types, along with an altered composition of stromal cell populations, denoting a “mesenchymal drift” (MD). Increased MD correlates with disease progression, reduced patient survival, and an elevated mortality risk, whereas suppression of key MD transcription factors leads to epigenetic rejuvenation. Notably, Yamanaka factor-induced partial reprogramming can markedly reduce MD before dedifferentiation and gain of pluripotency, rejuvenating the aging transcriptome at the cellular and tissue levels. These findings provide mechanistic insight into the underlying beneficial effects of partial reprogramming and offer a framework for developing interventions to reverse age-related diseases using the partial reprogramming approach.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"292 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.07.031","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The loss of cellular and tissue identity is a hallmark of aging and numerous diseases, but the underlying mechanisms are not well understood. Our analysis of gene expression data from over 40 human tissues and 20 diseases reveals a pervasive upregulation of mesenchymal genes across multiple cell types, along with an altered composition of stromal cell populations, denoting a “mesenchymal drift” (MD). Increased MD correlates with disease progression, reduced patient survival, and an elevated mortality risk, whereas suppression of key MD transcription factors leads to epigenetic rejuvenation. Notably, Yamanaka factor-induced partial reprogramming can markedly reduce MD before dedifferentiation and gain of pluripotency, rejuvenating the aging transcriptome at the cellular and tissue levels. These findings provide mechanistic insight into the underlying beneficial effects of partial reprogramming and offer a framework for developing interventions to reverse age-related diseases using the partial reprogramming approach.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.