An imaging genetics network model for clinical score assessment in Alzheimer's disease.

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-07-25 eCollection Date: 2025-08-01 DOI:10.1093/pnasnexus/pgaf234
Jinhua Sheng, Yu Xin, Qiao Zhang, Luyun Wang, Binbing Wang
{"title":"An imaging genetics network model for clinical score assessment in Alzheimer's disease.","authors":"Jinhua Sheng, Yu Xin, Qiao Zhang, Luyun Wang, Binbing Wang","doi":"10.1093/pnasnexus/pgaf234","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging genomics has recently emerged as a prominent focus in Alzheimer's disease (AD) research, showing great potential in predicting and diagnosing. In this paper, we propose a dual-stream imaging genetics network (DS-IGN) approach to AD clinical score assessment. DS-IGN is composed of two branches: one processes longitudinal data (neuroimaging) and the other handles static data (gene information). The imaging branch leverages hypergraphs to capture high-order relationships, constructing hypergraphs for samples and image features and performing weighted fusion. The genetic branch introduces an attention mechanism to adaptively adjust the weights of different genetic loci, which is particularly effective when multiple genes interact. By integrating both imaging and genetic features, DS-IGN effectively predicts patients' clinical scores in advance, providing early warnings of cognitive decline and supporting timely interventions to slow disease progression.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 8","pages":"pgaf234"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging genomics has recently emerged as a prominent focus in Alzheimer's disease (AD) research, showing great potential in predicting and diagnosing. In this paper, we propose a dual-stream imaging genetics network (DS-IGN) approach to AD clinical score assessment. DS-IGN is composed of two branches: one processes longitudinal data (neuroimaging) and the other handles static data (gene information). The imaging branch leverages hypergraphs to capture high-order relationships, constructing hypergraphs for samples and image features and performing weighted fusion. The genetic branch introduces an attention mechanism to adaptively adjust the weights of different genetic loci, which is particularly effective when multiple genes interact. By integrating both imaging and genetic features, DS-IGN effectively predicts patients' clinical scores in advance, providing early warnings of cognitive decline and supporting timely interventions to slow disease progression.

用于阿尔茨海默病临床评分评估的影像学遗传学网络模型。
影像基因组学近年来成为阿尔茨海默病(AD)研究的一个重要热点,在预测和诊断方面显示出巨大的潜力。在本文中,我们提出了一种双流成像遗传学网络(DS-IGN)方法来评估AD的临床评分。DS-IGN由两个分支组成:一个处理纵向数据(神经成像),另一个处理静态数据(基因信息)。成像分支利用超图来捕获高阶关系,为样本和图像特征构建超图,并执行加权融合。遗传分支引入注意机制,自适应调整不同基因座的权重,在多基因相互作用时特别有效。通过整合影像学和遗传特征,DS-IGN可以提前有效预测患者的临床评分,提供认知能力下降的早期预警,并支持及时干预以减缓疾病进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信