Generation of surrogate brain maps preserving spatial autocorrelation through random rotation of geometric eigenmodes.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-07-16 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.71
Nikitas C Koussis, James C Pang, Richa Phogat, Jayson Jeganathan, Bryan Paton, Alex Fornito, P A Robinson, Bratislav Misic, Michael Breakspear
{"title":"Generation of surrogate brain maps preserving spatial autocorrelation through random rotation of geometric eigenmodes.","authors":"Nikitas C Koussis, James C Pang, Richa Phogat, Jayson Jeganathan, Bryan Paton, Alex Fornito, P A Robinson, Bratislav Misic, Michael Breakspear","doi":"10.1162/IMAG.a.71","DOIUrl":null,"url":null,"abstract":"<p><p>The brain expresses activity in complex spatiotemporal patterns, reflecting the influence of spatially distributed cytoarchitectural, biochemical, and genetic properties. The correspondence between these different \"brain maps\" is a topic of substantial interest. However, these maps possess intrinsic smoothness (spatial autocorrelation, SA) which can inflate spurious cross-correlations, leading to false positive associations. Identifying true associations requires knowledge about the distribution of correlations that arise by chance in the presence of SA. This null distribution can be generated from an ensemble of surrogate brain maps that preserve the intrinsic SA but break the correlations between maps. The present work introduces the \"eigenstrapping\" method, which performs a spectral decomposition of brain maps, such as fMRI activation patterns, expressed on cortical and subcortical surfaces, using geometric eigenmodes, and then randomly rotating these modes to produce SA-preserving surrogate brain maps. It is shown that these surrogates appropriately represent the null distribution of chance pairwise correlations, with expected false positive control superior to current state-of-the-art procedures. Eigenstrapping is fast, eschews the need for parametric assumptions about the nature of a map's SA, and works with maps defined on smooth surfaces with a boundary, such as a single cortical hemisphere when the medial wall has been removed. Moreover, eigenstrapping generalizes to broader classes of null models than existing techniques, offering a unified approach for inference on cortical and subcortical maps, spatiotemporal processes, and complex patterns possessing higher-order correlations.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The brain expresses activity in complex spatiotemporal patterns, reflecting the influence of spatially distributed cytoarchitectural, biochemical, and genetic properties. The correspondence between these different "brain maps" is a topic of substantial interest. However, these maps possess intrinsic smoothness (spatial autocorrelation, SA) which can inflate spurious cross-correlations, leading to false positive associations. Identifying true associations requires knowledge about the distribution of correlations that arise by chance in the presence of SA. This null distribution can be generated from an ensemble of surrogate brain maps that preserve the intrinsic SA but break the correlations between maps. The present work introduces the "eigenstrapping" method, which performs a spectral decomposition of brain maps, such as fMRI activation patterns, expressed on cortical and subcortical surfaces, using geometric eigenmodes, and then randomly rotating these modes to produce SA-preserving surrogate brain maps. It is shown that these surrogates appropriately represent the null distribution of chance pairwise correlations, with expected false positive control superior to current state-of-the-art procedures. Eigenstrapping is fast, eschews the need for parametric assumptions about the nature of a map's SA, and works with maps defined on smooth surfaces with a boundary, such as a single cortical hemisphere when the medial wall has been removed. Moreover, eigenstrapping generalizes to broader classes of null models than existing techniques, offering a unified approach for inference on cortical and subcortical maps, spatiotemporal processes, and complex patterns possessing higher-order correlations.

通过几何特征模式的随机旋转,生成保留空间自相关的代理脑图。
大脑以复杂的时空模式表达活动,反映了空间分布的细胞结构、生化和遗传特性的影响。这些不同的“脑图”之间的对应关系是一个非常有趣的话题。然而,这些地图具有内在的平滑性(空间自相关,SA),这可能会夸大虚假的相互关系,导致假阳性关联。识别真正的关联需要了解在SA存在时偶然出现的相关性分布。这种零分布可以由一组替代脑图生成,这些图保留了内在SA,但打破了图之间的相关性。本研究介绍了“特征条带”方法,该方法使用几何特征模式对大脑图谱(如在皮层和皮层下表面表达的fMRI激活模式)进行频谱分解,然后随机旋转这些模式以生成保留sa的替代大脑图谱。结果表明,这些替代物恰当地代表了机会两两相关的零分布,预期的假阳性控制优于当前最先进的程序。特征带是快速的,避免了对地图SA性质的参数假设的需要,并且适用于在具有边界的光滑表面上定义的地图,例如当内侧壁被移除时的单个皮质半球。此外,与现有技术相比,特征带可以推广到更广泛的零模型类别,为皮质和皮质下地图、时空过程和具有高阶相关性的复杂模式的推理提供了统一的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信