Evidence for ancient selective sweeps followed by differentiation among three species of Sphyrapicus sapsuckers.

IF 2.3 3区 生物学 Q3 ECOLOGY
Libby Natola, Darren Irwin
{"title":"Evidence for ancient selective sweeps followed by differentiation among three species of Sphyrapicus sapsuckers.","authors":"Libby Natola, Darren Irwin","doi":"10.1093/jeb/voaf096","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic differentiation usually accompanies speciation, but that differentiation is often highly heterogeneous across the genome. Understanding what parts of the genome are more prone to differentiation can inform us about genomic regions and evolutionary processes that may be central to the speciation process. Here, we study genomic variation among three hybridizing species of North American woodpecker: red-breasted, red-naped, and yellow-bellied sapsuckers (Sphyrapicus ruber, S. nuchalis, and S. varius). We use whole genome resequencing to measure genetic variation among these species and to quantify how the level of differentiation varies across the genome. We find that regions of high relative differentiation between species (FST) tend to have low absolute differentiation between species (πB), indicating that regions of high relative differentiation often have more recent between-population coalescence times than regions of low relative differentiation do. Most of the high-FST genomic windows are found on the Z chromosome, pointing to this sex chromosome as being particularly important in sapsucker differentiation and potentially speciation. These results are consistent with a model of speciation in which selective sweeps of globally advantageous variants spread among partly differentiated populations, followed by differential local adaptation of those same genomic regions. We propose that sapsucker speciation may have occurred primarily via this process occurring on the Z chromosomes, resulting in genetic incompatibilities involving divergent Z chromosomes.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voaf096","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic differentiation usually accompanies speciation, but that differentiation is often highly heterogeneous across the genome. Understanding what parts of the genome are more prone to differentiation can inform us about genomic regions and evolutionary processes that may be central to the speciation process. Here, we study genomic variation among three hybridizing species of North American woodpecker: red-breasted, red-naped, and yellow-bellied sapsuckers (Sphyrapicus ruber, S. nuchalis, and S. varius). We use whole genome resequencing to measure genetic variation among these species and to quantify how the level of differentiation varies across the genome. We find that regions of high relative differentiation between species (FST) tend to have low absolute differentiation between species (πB), indicating that regions of high relative differentiation often have more recent between-population coalescence times than regions of low relative differentiation do. Most of the high-FST genomic windows are found on the Z chromosome, pointing to this sex chromosome as being particularly important in sapsucker differentiation and potentially speciation. These results are consistent with a model of speciation in which selective sweeps of globally advantageous variants spread among partly differentiated populations, followed by differential local adaptation of those same genomic regions. We propose that sapsucker speciation may have occurred primarily via this process occurring on the Z chromosomes, resulting in genetic incompatibilities involving divergent Z chromosomes.

古选择性扫荡的证据,随后是三种棘草的分化。
基因组分化通常伴随着物种形成,但这种分化在整个基因组中往往是高度异质的。了解基因组的哪些部分更容易分化,可以告诉我们基因组区域和进化过程,这可能是物种形成过程的核心。本文研究了北美三种杂交种啄木鸟的基因组变异:红胸啄木鸟、红枕啄木鸟和黄腹啄木鸟(Sphyrapicus ruber、S. nuchalis和S. varius)。我们使用全基因组重测序来测量这些物种之间的遗传变异,并量化分化水平如何在基因组中变化。研究发现,物种间高度相对分化区(FST)的物种间绝对分化率(πB)相对较低,表明物种间高度相对分化区的种群间融合时间较低。大多数高fst基因组窗口在Z染色体上发现,这表明这条性染色体在sapsucker分化和潜在的物种形成中特别重要。这些结果与物种形成模型一致,在该模型中,全球优势变异的选择性扫描在部分分化的种群中传播,随后是相同基因组区域的差异局部适应。我们认为,树浆的形成可能主要是通过发生在Z染色体上的这一过程发生的,导致涉及不同Z染色体的遗传不相容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Evolutionary Biology
Journal of Evolutionary Biology 生物-进化生物学
CiteScore
4.20
自引率
4.80%
发文量
152
审稿时长
3-6 weeks
期刊介绍: It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信