Aseela Fathima, Shadiya Fawzu Ameer, Rabia Ilhem Kerzabi, Roberta Giordo, Gheyath K Nasrallah, Hatem Zayed, Gianfranco Pintus
{"title":"Natural Antioxidants as Regulators of Circular RNA Expression and Function.","authors":"Aseela Fathima, Shadiya Fawzu Ameer, Rabia Ilhem Kerzabi, Roberta Giordo, Gheyath K Nasrallah, Hatem Zayed, Gianfranco Pintus","doi":"10.1002/wrna.70023","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a class of noncoding RNAs characterized by covalently closed loop structures that confer high stability and diverse regulatory functions. Emerging evidence suggests that circRNAs modulate gene expression by acting as miRNA sponges, interacting with RNA-binding proteins (RBPs), influencing transcription, and serving as translational templates. Their dysregulation has been linked to various diseases, including cancer, cardiovascular, neurodegenerative, and metabolic disorders. Oxidative stress, a common hallmark in these pathologies, can alter circRNA expression and function. Natural antioxidants, derived from dietary sources such as fruits, vegetables, herbs, and medicinal plants, offer a promising approach for restoring redox homeostasis and influencing the regulation of circRNA networks. This review provides a comprehensive overview of how different classes of natural antioxidants, including flavonoids, polyphenols, carotenoids, terpenoids, vitamins, and alkaloids, modulate circRNA expression and function in various disease contexts. Representative compounds such as quercetin, curcumin, resveratrol, astaxanthin, kaempferol, and genistein exhibit circRNA-mediated actions that impact oxidative stress, inflammation, cell proliferation, apoptosis, and differentiation. The molecular mechanisms involve circRNA-miRNA-mRNA axes, interactions with RBPs, and modulation of epigenetic regulators and signaling pathways. We also discuss key challenges, including limited mechanistic understanding, bioavailability constraints, and the need for in vivo validation. Future perspectives emphasize the integration of antioxidant therapy with RNA-targeted approaches, advanced delivery systems, and personalized profiling of circRNA. Collectively, the regulatory interplay between natural antioxidants and circRNAs represents a promising frontier in redox biology and RNA-based therapeutics. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"16 4","pages":"e70023"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.70023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs characterized by covalently closed loop structures that confer high stability and diverse regulatory functions. Emerging evidence suggests that circRNAs modulate gene expression by acting as miRNA sponges, interacting with RNA-binding proteins (RBPs), influencing transcription, and serving as translational templates. Their dysregulation has been linked to various diseases, including cancer, cardiovascular, neurodegenerative, and metabolic disorders. Oxidative stress, a common hallmark in these pathologies, can alter circRNA expression and function. Natural antioxidants, derived from dietary sources such as fruits, vegetables, herbs, and medicinal plants, offer a promising approach for restoring redox homeostasis and influencing the regulation of circRNA networks. This review provides a comprehensive overview of how different classes of natural antioxidants, including flavonoids, polyphenols, carotenoids, terpenoids, vitamins, and alkaloids, modulate circRNA expression and function in various disease contexts. Representative compounds such as quercetin, curcumin, resveratrol, astaxanthin, kaempferol, and genistein exhibit circRNA-mediated actions that impact oxidative stress, inflammation, cell proliferation, apoptosis, and differentiation. The molecular mechanisms involve circRNA-miRNA-mRNA axes, interactions with RBPs, and modulation of epigenetic regulators and signaling pathways. We also discuss key challenges, including limited mechanistic understanding, bioavailability constraints, and the need for in vivo validation. Future perspectives emphasize the integration of antioxidant therapy with RNA-targeted approaches, advanced delivery systems, and personalized profiling of circRNA. Collectively, the regulatory interplay between natural antioxidants and circRNAs represents a promising frontier in redox biology and RNA-based therapeutics. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
期刊介绍:
WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.