Significant but Overlooked: Atmospheric HONO Formation from Surface Ammonium Oxidation with Superoxide Radicals.

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-08-12 eCollection Date: 2025-01-01 DOI:10.34133/research.0819
Hong Wang, Zehui Hu, Shujun Liu, Xin Zhang, Meijia Jiang, Yanjuan Sun, Fan Dong
{"title":"Significant but Overlooked: Atmospheric HONO Formation from Surface Ammonium Oxidation with Superoxide Radicals.","authors":"Hong Wang, Zehui Hu, Shujun Liu, Xin Zhang, Meijia Jiang, Yanjuan Sun, Fan Dong","doi":"10.34133/research.0819","DOIUrl":null,"url":null,"abstract":"<p><p>Resolving the sources of HONO formation is an indispensable aspect in understanding the enhancement of atmospheric oxidation. However, the contributing sources of high HONO formation rate remain unclear during humid haze episodes. The photochemical conversion of surface nitrate (NO<sub>3</sub> <sup>-</sup>), considered as the dominant contributor to the daytime HONO generation, exhibits severe constraint under high relative humidity (RH) conditions. Unexpectedly, ammonium (NH<sub>4</sub> <sup>+</sup>) on the surface of photoactive mineral dust shows a gradual acceleration of HONO generation with increasing RH under simulated solar irradiation, especially at high RH. This reversed observation stems from a change in the photochemical pathway for the HONO formation from NO<sub>3</sub> <sup>-</sup> and NH<sub>4</sub> <sup>+</sup>. The photochemical conversion of surface NO<sub>3</sub> <sup>-</sup> is determined by photogenerated electrons (NO<sub>3</sub> <sup>-</sup>→NO<sub>2</sub>→NO<sub>2</sub> <sup>-</sup>→HONO), while the superoxide radical (∙O<sub>2</sub> <sup>-</sup>) generated during photochemical reaction drives the surface NH<sub>4</sub> <sup>+</sup> to directly form HONO with the pathway (NH<sub>4</sub> <sup>+</sup>∙+∙O<sub>2</sub> <sup>-</sup>→NO<sub>2</sub> <sup>-</sup> + H<sub>2</sub>O→HONO). Under high RH conditions, oxygen molecules (O<sub>2</sub>) have greatly better access to photogenerated electrons than NO<sub>2</sub>, resulting in an interruption of the procedure from NO<sub>2</sub> to NO<sub>2</sub> <sup>-</sup> during NO<sub>3</sub> <sup>-</sup> conversion. Therefore, the favorably generated ∙O<sub>2</sub> <sup>-</sup> fuels the photochemical conversion of surface NH<sub>4</sub> <sup>+</sup> while inhibiting the conversion of NO<sub>3</sub> <sup>-</sup> to diurnal HONO formation. This work highlights the overlooked contribution of HONO formation from NH<sub>4</sub> <sup>+</sup>, especially under high RH conditions, and advances the understanding of a renewed role for O<sub>2</sub> in atmospheric chemical processes.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0819"},"PeriodicalIF":10.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12340223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0819","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Resolving the sources of HONO formation is an indispensable aspect in understanding the enhancement of atmospheric oxidation. However, the contributing sources of high HONO formation rate remain unclear during humid haze episodes. The photochemical conversion of surface nitrate (NO3 -), considered as the dominant contributor to the daytime HONO generation, exhibits severe constraint under high relative humidity (RH) conditions. Unexpectedly, ammonium (NH4 +) on the surface of photoactive mineral dust shows a gradual acceleration of HONO generation with increasing RH under simulated solar irradiation, especially at high RH. This reversed observation stems from a change in the photochemical pathway for the HONO formation from NO3 - and NH4 +. The photochemical conversion of surface NO3 - is determined by photogenerated electrons (NO3 -→NO2→NO2 -→HONO), while the superoxide radical (∙O2 -) generated during photochemical reaction drives the surface NH4 + to directly form HONO with the pathway (NH4 +∙+∙O2 -→NO2 - + H2O→HONO). Under high RH conditions, oxygen molecules (O2) have greatly better access to photogenerated electrons than NO2, resulting in an interruption of the procedure from NO2 to NO2 - during NO3 - conversion. Therefore, the favorably generated ∙O2 - fuels the photochemical conversion of surface NH4 + while inhibiting the conversion of NO3 - to diurnal HONO formation. This work highlights the overlooked contribution of HONO formation from NH4 +, especially under high RH conditions, and advances the understanding of a renewed role for O2 in atmospheric chemical processes.

重要但被忽视的:表面氨氧化与超氧自由基形成大气HONO。
解决HONO形成的来源是理解大气氧化增强不可缺少的一个方面。然而,在潮湿雾霾期间,高HONO形成率的贡献来源仍不清楚。表面硝酸盐(NO3 -)的光化学转化被认为是白天HONO产生的主要贡献者,在高相对湿度(RH)条件下表现出严重的限制。出乎意料的是,在模拟太阳辐照下,光活性矿物粉尘表面的铵(NH4 +)随着RH的增加而逐渐加速HONO的生成,特别是在高RH条件下。这种相反的观察结果源于NO3 -和NH4 +形成HONO的光化学途径的变化。表面NO3 -的光化学转化由光生电子决定(NO3 -→NO2→NO2 -→HONO),而光化学反应产生的超氧自由基(∙O2 -)通过(NH4 +∙+∙O2 -→NO2 - + H2O→HONO)途径驱动表面NH4 +直接形成HONO。在高相对湿度条件下,氧分子(O2)比NO2更容易获得光电子,导致NO3 -转化过程中从NO2到NO2 -的过程中断。因此,有利生成的∙O2 -促进了表面NH4 +的光化学转化,同时抑制了NO3 -转化为白天形成的HONO。这项工作强调了被忽视的NH4 +形成HONO的贡献,特别是在高RH条件下,并促进了对O2在大气化学过程中的新作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信