Jie Zhao, Jianqiang Liu, Chunfeng Yang, Hui Tang, Yang Chen, Yudong Zhang
{"title":"PPEA: Personalized positioning and exposure assistant based on multi-task shared pose estimation transformer.","authors":"Jie Zhao, Jianqiang Liu, Chunfeng Yang, Hui Tang, Yang Chen, Yudong Zhang","doi":"10.1177/09544119251359978","DOIUrl":null,"url":null,"abstract":"<p><p>Hand and foot digital radiography (DR) is an indispensable tool in medical imaging, with varying diagnostic requirements necessitating different hand and foot positionings. Accurate positioning is crucial for obtaining diagnostically valuable images. Furthermore, adjusting exposure parameters such as exposure area based on patient conditions helps minimize the likelihood of image retakes. We propose a personalized positioning and exposure assistant capable of automatically recognizing hand and foot positionings and recommending appropriate exposure parameters to achieve these objectives. The assistant comprises three modules: (1) Progressive Iterative Hand-Foot Tracker (PIHFT) to iteratively locate hands or feet in RGB images, providing the foundation for accurate pose estimation; (2) Multi-Task Shared Pose Estimation Transformer (MTSPET), a Transformer-based model that encompasses hand and foot estimation branches with similar network architectures, sharing a common backbone. MTSPET outperformed MediaPipe in the hand pose estimation task and successfully transferred this capability to the foot pose estimation task; (3) Domain Expertise-embedded Positioning and Exposure Assistant (DEPEA), which combines the key-point coordinates of hands and feet with specific positioning and exposure parameter requirements, capable of checking patient positioning and inferring exposure areas and Regions of Interest (ROIs) of Digital Automatic Exposure Control (DAEC). Additionally, two datasets were collected and used to train MTSPET. A preliminary clinical trial showed strong agreement between PPEA's outputs and manual annotations, indicating the system's effectiveness in typical clinical scenarios. The contributions of this study lay the foundation for personalized, patient-specific imaging strategies, ultimately enhancing diagnostic outcomes and minimizing the risk of errors in clinical settings.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"788-801"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251359978","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hand and foot digital radiography (DR) is an indispensable tool in medical imaging, with varying diagnostic requirements necessitating different hand and foot positionings. Accurate positioning is crucial for obtaining diagnostically valuable images. Furthermore, adjusting exposure parameters such as exposure area based on patient conditions helps minimize the likelihood of image retakes. We propose a personalized positioning and exposure assistant capable of automatically recognizing hand and foot positionings and recommending appropriate exposure parameters to achieve these objectives. The assistant comprises three modules: (1) Progressive Iterative Hand-Foot Tracker (PIHFT) to iteratively locate hands or feet in RGB images, providing the foundation for accurate pose estimation; (2) Multi-Task Shared Pose Estimation Transformer (MTSPET), a Transformer-based model that encompasses hand and foot estimation branches with similar network architectures, sharing a common backbone. MTSPET outperformed MediaPipe in the hand pose estimation task and successfully transferred this capability to the foot pose estimation task; (3) Domain Expertise-embedded Positioning and Exposure Assistant (DEPEA), which combines the key-point coordinates of hands and feet with specific positioning and exposure parameter requirements, capable of checking patient positioning and inferring exposure areas and Regions of Interest (ROIs) of Digital Automatic Exposure Control (DAEC). Additionally, two datasets were collected and used to train MTSPET. A preliminary clinical trial showed strong agreement between PPEA's outputs and manual annotations, indicating the system's effectiveness in typical clinical scenarios. The contributions of this study lay the foundation for personalized, patient-specific imaging strategies, ultimately enhancing diagnostic outcomes and minimizing the risk of errors in clinical settings.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.