Amit Ghimire, Hong Seok Lee, Youngnam Yoon, Yoonha Kim
{"title":"Prediction of soybean yellow mottle mosaic virus in soybean using hyperspectral imaging.","authors":"Amit Ghimire, Hong Seok Lee, Youngnam Yoon, Yoonha Kim","doi":"10.1186/s13007-025-01428-y","DOIUrl":null,"url":null,"abstract":"<p><p>Disease incidence is a key factor contributing to reduced crop yield. Thus, early identification of crop diseases is crucial for minimizing the effects of disease incidence and maximizing crop yield. Therefore, this study aims to identify soybean yellow mottle mosaic virus (SYMMV) using the hyperspectral imaging (HSI) method combined with the machine learning (ML) technique. The soybeans were cultivated under two different environmental conditions, namely, EN I and EN II. In EN I, soybean plants were infected with SYMMV at the third vegetative growth stage, whereas in EN II, infected seeds were used. A reverse transcription polymerase chain reaction was conducted to distinguish the infected from noninfected plants. Mean spectrum values obtained from regions of interest in the Environmental Visualizing Images software served as data, while their respective wavelengths were used as features for ML models. The information gain method was used for the selection of characteristic wavelengths associated with disease identification. Continuous wavelengths ranging from 653 nm to 682 nm showed more information gain in both environments, indicating their significant role in SYMMV classification. Two classification models, random forest and k-nearest neighbor, classified the infected and noninfected plants at an early stage with over 90% accuracy. The support vector machine classified the disease with an average accuracy of > 95% across both environments, showing the best performance among the selected models. The logistic regression model showed lower accuracy, exceeding 82% in EN I, but improved to > 90% in EN II. These findings suggest that HSI combined with ML is the best alternative to the traditional method of disease identification in plants.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"112"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01428-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Disease incidence is a key factor contributing to reduced crop yield. Thus, early identification of crop diseases is crucial for minimizing the effects of disease incidence and maximizing crop yield. Therefore, this study aims to identify soybean yellow mottle mosaic virus (SYMMV) using the hyperspectral imaging (HSI) method combined with the machine learning (ML) technique. The soybeans were cultivated under two different environmental conditions, namely, EN I and EN II. In EN I, soybean plants were infected with SYMMV at the third vegetative growth stage, whereas in EN II, infected seeds were used. A reverse transcription polymerase chain reaction was conducted to distinguish the infected from noninfected plants. Mean spectrum values obtained from regions of interest in the Environmental Visualizing Images software served as data, while their respective wavelengths were used as features for ML models. The information gain method was used for the selection of characteristic wavelengths associated with disease identification. Continuous wavelengths ranging from 653 nm to 682 nm showed more information gain in both environments, indicating their significant role in SYMMV classification. Two classification models, random forest and k-nearest neighbor, classified the infected and noninfected plants at an early stage with over 90% accuracy. The support vector machine classified the disease with an average accuracy of > 95% across both environments, showing the best performance among the selected models. The logistic regression model showed lower accuracy, exceeding 82% in EN I, but improved to > 90% in EN II. These findings suggest that HSI combined with ML is the best alternative to the traditional method of disease identification in plants.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.